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Unoccupied aerial systems (UAS) are becoming a regular tool in agriculture to obtain phenotypic 
information of plant growth and development. In this study, we collected red, green, and blue (RGB) 
images using UAS multiple times throughout the growing season from a cotton field experiment 
conducted in 2016 and 2021. Collected images were processed to obtain digital surface models (DSMs) 
from which canopy height (CH) measurements were extracted. Crop growth curve was obtained 
by fitting several non-linear growth functions on the multi-temporal CH measurements. The five-
parameter logistic function performed best with highest R2 (0.98) and lowest RMSE (6.41). The first 
and second order derivative of the five-parameter logistic function was performed to obtain several 
canopy growth parameters. These parameters were used to evaluate the maturity of cotton genotypes 
and correlated with yield. The maximum growth rate was correlated with yield (R2 = 0.46 in 2016 and 
R2 = 0.68 in 2021). Additionally, the time of onset of steady phase was used to rate maturity of the 
genotypes with 80% accuracy. This study demonstrated an approach to summarize high-resolution 
multi-temporal data obtained by UAS to better understand crop growth and development with a 
potential to be used for assessing the maturity of the genotypes, yield estimations, and management 
decisions of plant growth regulators.
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Cotton (Gossypium hirsutum L.) is a perennial plant with an indeterminate growth pattern. Therefore, it 
simultaneously produces both vegetative and reproductive structures1. This unique growth habit allows cotton 
to adapt to varying environmental conditions and makes its growth more complex to manage. As the fruit 
load develops, the plant’s carbohydrate and nutrient demands increase in proportion to the number of growing 
bolls. However, the plant’s ability to supply carbohydrates is limited by canopy light interception. Canopy 
closure and architecture influence how effectively light penetrates through the canopy, with dense canopies 
reducing photosynthesis in lower leaves and further constraining carbohydrate supply. When carbohydrate 
demand exceeds supply, the cotton plant reaches “cutout,” which is typically a stage at five nodes above the 
uppermost white flower. This stage marks the end of major new node formation and shifts resources toward boll 
development and maturation2,3. Cutout represents a crucial transition point in cotton growth, directly impacting 
yield, fiber quality, and overall net returns. The growth pattern of cotton typically follows an S-shaped sigmoidal 
curve, commonly observed in biological systems. This curve is divided into three phases by days after planting 
(DAP): the lag phase (10–30 DAP), exponential phase (30–75 DAP), and maturation phase (75–120 DAP)4. 
The lag phase corresponds to early growth, dominated by seed germination and root establishment. During 
the exponential phase, rapid biomass accumulation occurs due to canopy expansion and the development of 
reproductive structures, such as squares and bolls5. The maturation phase, which begins after cutout, is marked 
by slower growth as the plant focuses on boll maturation and fiber development6.

Nonlinear growth models, such as the Gompertz curve, are widely used to study these dynamics and explain 
how growth rates change over time7–9. This approach has greater adaptability7 and has been employed for a 
long time to study the complex process of plant growth8. As cotton growth follows an S-shaped sigmoidal 
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pattern, several non-linear models have been developed to describe it10,11. These functions such as three 
parameter (3P), four parameter logistic (4P), and five parameter (5P) differ in their flexibility12,13. The 3P 
function assumes a lower asymptote of zero, reaches an inflection point at maximum growth, and eventually 
converges exponentially7,14. The 4P function relaxes some of these constraints15, but both are limited in handling 
asymmetric data16. By adding a fifth parameter, the 5P function captures curve asymmetry and provides greater 
modeling flexibility17,18. This factor significantly reduces the lack-of-fit error19. For example, in cotton, the shift 
from vegetative to reproductive growth involves complex physiological changes that may not align with the rigid 
phases defined by simpler models2. Similarly, incorporating additional inflection points allows for a more precise 
estimation of growth phase timing and duration which can improve the effectiveness of assessing agronomic 
treatments such as irrigation, fertilization, use of growth regulators20, and evaluate genotypes for their response 
to the environment. Using a sigmoidal curve with five inflection points offers an opportunity to capture them 
and allow for more detailed growth phase analysis. This approach could improve predictions of phase timing, 
duration, and growth rate by addressing key limitations in current modeling techniques. These enhanced 
modeling approaches must be supported by accurate and high-frequency monitoring to capture the nuances 
of crop growth. Effective crop growth monitoring can be done by using the structural phenotypic features of 
the plants21. One such phenotypic feature, canopy height (CH), reflects the structural properties of the cotton 
canopy22 and can be used to study the growth process. Accurate growth analysis requires high-frequency data 
collection throughout the growing season to extract reliable parameters, which can then be used to assess the 
impact of biotic and abiotic stresses, cultivar maturity, and yield estimations23,24. Although some studies have 
investigated the rate and timing of growth, routine use in crop research remains limited. Manual data collection 
several times over the season is time-consuming, laborious, and often prone to errors25,26. Recent advancements 
in unoccupied aerial systems (UAS) technology offer a solution to these challenges27. Equipped with diverse 
sensors, such as RGB and multispectral cameras, UAS platforms can collect high-resolution, spatiotemporal 
data that can accurately assess plant growth dynamics, including CH, canopy cover, and canopy volume28–30. 
These measurements provide an understanding of growth patterns and health status over time. Moreover, UAS 
data enables the integration of vegetative indices such as NDVI and allows precise tracking of canopy health and 
maturity progression31,32. This approach has the potential to refine harvest-aid application timing and rates by 
incorporating spatial variability and reducing costs and environmental impact.

While UAS enables the collection of large amounts of data, these datasets are often underutilized. Studies 
primarily focus on basic applications, such as detecting phenotypic features, estimating yield or measuring 
instantaneous growth parameters, without analyzing how these features evolve over time33–35. Based on these 
studies, this underutilization arises from a lack of advanced modeling tools and standardized workflows to 
integrate and interpret high-dimensional, multi-temporal UAS data. This lack of tools and workflows prohibit 
machine learning and time-series analysis to unlock dynamic crop growth analysis. This creates a scenario where 
important temporal information remains untapped and limits the potential for overall crop growth analysis. For 
example, while CH measurements are routinely extracted from UAS data, their integration into growth models 
for phase-specific analysis or yield estimation is rarely explored22. To address this, our study proposes using 
UAS-derived multi-temporal datasets to develop growth curves and extract growth parameters.

The novelty of this study was to demonstrate the adaptation and integration of growth functions on UAS-
derived CH and derive growth parameters that can be potentially used to assess genotypes in breeding programs. 
Additionally, we hope that these growth parameters can be used by agronomists to optimize irrigation timing 
and plant growth regulators. A web-based user interface was developed to perform growth analysis using UAS-
based canopy features such as CH and to extract growth parameters proposed in this study. To the best of 
our knowledge, this study is the first of its kind to propose a crop growth analysis tool that can summarize 
multi-temporal data sets collected by UAS and can obtain parameters to quantify the timing, rate, and length 
of major crop growth phases with use cases for evaluating cotton maturity and yield estimations36. Hence, this 
study aimed to (i) perform growth analysis by using CH measurements obtained from UAS, (ii) extract growth 
parameters from CH, and (iii) assess the relationship between the yield of cotton varieties and the growth 
parameters obtained from CH.

Materials and methods
Experimental set-up
This study was conducted at Texas A&M AgriLife Research and Extension Center at Corpus Christi (27.780834 
N, 97.561389W) in 2016 and 2021. The soil in the research field is classified as Victoria clay [fine smectic 
hyperthermic Sodic Haplusterts Vertisol (Soil Series Classification Database, Natural Resources Conservation 
Service, United States Department of Agriculture, 2014)]. The weather data from 2016 and 2021 (Fig. 1) were 
collected from a local weather station (Campbell scientific: HMP60-L10 Vaisala Temperature and RH Sensor, 
and TE525-L25 6″ Orifice Rain Gauge) located at the experimental site. The year 2021 was wet and the average 
maximum temperature from planting to harvest was 36.6  °C and received a cumulative rainfall of 620 mm. 
In 2016, the cotton growing season was relatively dry with cumulative rainfall of 295  mm and the average 
maximum temperature was 38.3 °C. Our aim in selecting two years with contrasting weather was to investigate 
if CH differences and subsequent variations in growth rates due to weather would create any differences in 
growth analysis and parameters.

Trial establishment
Thirty varieties in 2016 and forty-two varieties in 2021 were planted in a Randomized Complete Block Design 
(RCBD) with four replications under rainfed cropping system. Each plot consists of two rows, 10 m long, and 
96 cm spacing. In both years, seeds were planted using a two-row cone planter at seeding rate of 12 seeds/meter. 
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Planting was done on April 1st in 2016 and March 26, 2021. Plots were machine harvested with a modified John 
Deere 9930 spindle picker on August 9, 2016 and August 24, 2021.

UAS data collection and processing
DJI Phantom 2 Vision Plus (2016) and DJI Phantom 4 RTK (2021) (SZ DJI Technology Co., Ltd., Shenzhen, 
Guangdong, China) was used as the UAS platforms to collect images. Phantom 2 is equipped with a 1/2.3′′ 
14 Mega pixels (4383 × 3288 pixels) Red, Green, Blue (RGB) sensor, whereas Phantom 4 is equipped with a 
20-megapixel, 2.54 cm RGB sensor. UAS data were collected multiple times during the season (Table 1) at an 
altitude of 25 m with 90% front and side overlap in 2016, and 85% in 2021. This resulted in a ground sampling 
distance (GSD) of 0.9 cm/pixel in 2016 and 0.65 cm/pixel in 2021. Flights were not conducted beyond 100 
DAP in 2021, as previous data from 2016 indicated that canopy height (CH) plateaued after this stage. A total 
of 9 semi-permanent Ground Control Points (GCP) were installed across the field as geodetic benchmarks for 
multi-temporal image georeferencing. The GCPs are 0.6 m × 0.6 m plywood boards painted yellow and black for 
easy recognition during image processing. In 2016, GCPs were surveyed using a dual frequency, post processed 
kinematic (PPK) GPS system, model 20 Hz V-Map Air (Micro Aerial Project L.L.C., Gainesville, FL). In 2021 
the position of GCPs was surveyed using Real Time Kinematic Global Positioning System (RTK-GPS) device, 
Emlid Reach RS2 (EMLID, Hong Kong, China). GCPs were used for improving absolute accuracy as well as 
validation of georeferencing. Agisoft Metashape software (Agisoft LLC, St. Petersburg, Russia) was used for 
image processing to generate geospatial data products such as 3D point cloud, orthomosaic, DSM (Digital 
Surface Model), and DTM (Digital Terrain Model) (Fig. 2A)28.

Feature generation and data extraction
We obtained CH from the Canopy Height Model (CHM) which was obtained by subtracting the DTM from the 
DSM37 (Fig. 2B). DTMs were generated from UAS data collected before planting and DSMs were the surface 

2016 DAP 2016 DAP 2021 DAP 2021 DAP

April 12, 2016 12 June 14, 2016 75 April 6, 2021 12 June 8, 2021 75

April 15, 2016 15 June 17, 2016 78 April 9, 2021 15 June 14, 2021 81

April 27, 2016 27 June 20, 2016 81 April 21, 2021 27 June 17, 2021 84

May 7, 2016 36 June 23, 2016 84 April 30, 2021 36 June 21, 2021 88

May 16, 2016 46 June 27, 2016 88 May 10, 2021 46 June 24, 2021 91

May 20, 2016 50 June 30, 2016 91 May 14, 2021 50 July 2, 2021 99

May 23, 2016 53 July 8, 2016 99 May 17, 2021 53

May 27, 2016 57 July 13, 2016 104 May 21, 2021 57

May 31, 2016 61 July 16, 2016 107 May 25, 2021 61

June 2, 2016 63 July 19, 2016 110 May 27, 2021 63

June 7, 2016 68 July 21, 2016 112 June 1, 2021 68

Table 1.  Unoccupied aerial systems (UAS) data collection timeline throughout the cotton growing season in 
2016 and 2021. The flight intervals were determined by cotton phenological stages as well as conducive flight 
conditions. DAP days after planting.

 

Fig. 1.  (a) Cumulative daily rainfall, (b) Minimum temperature, (c) Maximum temperature during 2016 and 
2021 for the cotton growing season (January to August).
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models acquired throughout the growing season38. A plot boundary shape file was generated by using the plot 
boundary tool in the UAS hub (https://uashub.tamucc.edu) and was overlaid on the CHM to extract plot level 
CH data.

Nonlinear growth models
The cotton crop growth and development follow an S-shaped sigmoidal curve39 as shown in (Fig. 3). Therefore, 
the multi-temporal CH measurements obtained throughout the growing period were plotted. Multiple 3P, 4P, 
and 5P models were used to fit cotton CH data, as they represent common nonlinear growth functions with 
increasing parameter complexity. This allows comparison of model flexibility and goodness-of-fit in describing 
canopy growth. Curves such as sigmoid, logistic, Weibull, Gompertz, Hill, and Chapman were chosen to 
compare their ability to describe growth over time. We tested several functions that depict the S-shaped patterns 
representing cotton growth and development (Table 2) and were fitted using nonlinear least squares (Levenberg–
Marquardt method), implemented in SigmaPlot (v15.0.0; Grafiti LLC, Palo Alto, CA), which was also used to 
generate fitted curves and visualizations. Their performances were compared using coefficient of determination 
(R2) and the root mean square error (RMSE) to identify the best-fitting model for cotton growth.

Statistical analysis
Growth parameters for each plot were calculated using Python scripts and visualized using the Matplotlib 
package (Python Software Foundation, 2001). The first and second order derivatives were performed on the 5P 
logistic function and ten different parameters that relate to the timing and rate of growth were obtained. Using 
first-order derivative of the 5P logistic function we obtained the time (Tmax) and rate (Rmax) of the maximum 
growth rate. The growth parameters i.e., the time of onset of the exponential phase (T1), the time (T2) and 
rate (R2) of onset of linear phase, the time (T4) and rate (R4) of end of linear phase, and the time of onset of 
the steady phase (T5) were obtained by conducting second order derivative of the function. For each year, a 
one-way analysis of variance (ANOVA) was conducted using SAS software (SAS Institute, 2008) to compare 
the effect of genotype on growth parameters. The experimental design followed a randomized complete block 
design (RCBD) with genotype as a fixed effect and replication as a random effect. To investigate the relationship 
between the growth parameters and the yield, linear regression analysis was conducted in Python separately for 

Fig. 2.  Workflow for unoccupied aerial systems (UAS) of (A) red green blue (RGB) data processing to develop 
orthomosaic and DSM in Agisoft Metashape software, and (B) feature generation and data extraction of 
canopy height (CH) from unoccupied aerial system (UAS)-based imagery data.
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2016 and 2021. The residuals were checked for normality and heteroscedasticity to ensure model assumptions 
were met. To assess the goodness of fit for the regression models, the R2 and RMSE were computed.

Results
Multi-temporal CH measurements and growth analysis
Upon plotting the multi-temporal CH measurements obtained from UAS, a similar trend (Fig. 4) was found 
in both years. The crop attained maximum height around 85–90 DAP with an average of 125 ± 24 cm during 
this time. In both years, crop growth and development follow an S-shaped sigmoidal curve39. Based on this 
pattern, several sigmoidal growth functions were applied to the multi-temporal CH data averaged across plots 
(Fig. 5). We found that the 5P logistic function had the best fit with the lowest RMSE (6.41) and highest R2 (0.98) 
compared to the rest of the sigmoidal functions (Table 3). This may reflect underlying asymmetry, possibly 
caused by variation in availability and distribution of resources such as water and fertilizer during the growing 
season. Therefore, an additional parameter in the growth function to address this asymmetry. Based on these 
results, the 5P logistic function was selected to demonstrate growth analysis and to obtain growth parameters. 
This function has the potential to provide the flexibility needed to fit the data obtained across the environment.

Growth parameters extraction
The first and second order derivatives were performed on the 5P logistic function and ten different parameters 
that relate to the timing and rate of growth (Table 4) were obtained. As shown in Fig. 6a, T1 represents the time 
when the growth of the plant is at initiation of canopy expansion, resulting in the gradual development of its 
canopy structure. T2 and R2 represent the time and rate during onset of the linear phase when the canopy growth 
starts to increase. At this stage, the plant produces squared buds that affect yield potential. Over time these floral 
buds develop into mature cotton bolls. Tmax and Rmax depict the time and rate when the canopy growth rate 
is at its peak. T4 and R4 represent the end of the linear phase, where the plant growth rate gradually declines. 
T5 shows the onset of the steady phase which means plant growth is at minimum and directs energy towards 
boll development. This is also the reason that a negative slope on the growth rate curve is observed at 50–80 
DAP (Fig. 6). DL describes the linear phase of the plant and DE represents the whole exponential growth phase. 
Performing the first-order derivative of the 5P logistic function we obtained the time (Tmax) and rate (Rmax) of 
the maximum growth rate (Eq. 1 and Fig. 6b). The growth parameters i.e., the time of onset of the exponential 
phase (T1), the time (T2) and rate (R2) of onset of linear phase, the time (T4) and rate (R4) of end of linear phase, 
and the time of onset of the steady phase (T5) were obtained (Fig. 6) by conducting second order derivative of 
the function (Eq. 2 and Fig. 6c).
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where, a is the starting point for the growth of the canopy after planting, b is the slope of the curve, x0 is the time 
at which the maximum growth occurs or inflection point, and y0 is the highest maximum growth before harvest, 
c is an asymmetric factor (c > 0).

Genotypic variation in growth parameters
As the cotton genotypes were different in different years, the analysis of variance for growth parameters was 
conducted separately for both years to assess the effect of genotypes on growth parameters. Significant differences 

Fig. 3.  The cotton crop growth pattern and its stages.
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were observed among the genotypes (p < 0.05) for all the parameters obtained from CH except for T1 in 2016. 
In 2016, T1 ranged from 9 to 19 DAP, T2 ranged from 39 to 50 DAP, R2 ranged from 1.65 to 2.79 cm day−1, Tmax 
ranged from 57 to 68 DAP, Rmax ranged from 2.45 to 3.11 cm day−1, T4 ranged from 72 to 85 DAP, R4 ranged 
from 1.75 to 3.58 cm day−1, T5 ranged from 102 to 109 DAP, DL ranged from 33 to 40 DAP, and DE ranged from 
87 to 100 DAP. In 2021, T1 ranged from 26 to 42 DAP, T2 ranged from 40 to 49 DAP, R2 ranged from 2.2 to 4 cm 
day−1, Tmax ranged from 52 to 60 DAP, Rmax ranged from 5 to 7.3 cm day−1, T4 ranged from 59 to 66 DAP, R4 
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Table 2.  List of all growth functions used for the study. † where, a is the starting point for the growth of 
the canopy after planting, b is the slope of the curve, x0 is the time at which the maximum growth occurs or 
inflection point, and y0 is the highest maximum growth before harvest, c is an asymmetric factor (c > 0).
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ranged from 2.5 to 3.7 cm day−1, T5 ranged from 70 to 106 DAP, DL ranged from 11 to 18 DAP, and DE ranged 
from 33 to 67 DAP (Fig. 7).

T1 was earlier in 2016 compared to 2021, while T2, Tmax, T4, and T5 were earlier in 2021. This indicates 
that, compared to 2016, it took longer for cotton in 2021 to reach an exponential growth phase, but it reached 
maximum growth rate and maximum height earlier. Furthermore, the plants grew with lower R2, Rmax, and R4 
in 2016 compared to 2021, indicating 2021 had higher growth rate. Difference in DAP of growth parameters can 
be attributed to the differences in rainfall pattern over both years (Fig. 1a). Within the first 45 DAP (Feb 27th 
to Apr 13th in 2021; and Apr 1st to May 15th in 2021) cotton received almost no rain in 2021 compared to about 
50 mm in 2016. This could have led to faster early growth and early T1 in 2016. For the later part of the life cycle, 
rainfall was erratic in 2016 and consistent in 2021 leading to cumulative rainfall of 2016 (295 mm) to be less 
than half of 2021 (620 mm). This consistent rain of 2021 might have been the reason behind early T2, Tmax, T4 
and T5, and higher R2 and Rmax in 2021 compared to 2016. The difference in growth parameters in 2016 could 
be drought response of cotton plants44. This drought response might also explain the longer DL and DE in 2016 
compared to 2021.

Relationship between growth parameters and yield
Comparing the Pearson’s correlation coefficients we observed that growth parameters T2, DL, R2, and Rmax were 
significantly correlated (P < 0.01) with cotton yield in both 2016 and 2021 (Table 5). Among these, Rmax had 
the highest positive correlation with yield (r = 0.67 in 2016 and r = 0.82 in 2021). This suggests that a higher 
maximum growth rate leads to a better yield. Significant correlation with R2 indicates that faster early growth 
contributes to higher yield and DL, the time it takes to grow from T2 to T4, shows that a longer linear growth 
phase is linked to better yield. These traits are essential for cotton yield because they reflect the plant’s ability 
to grow quickly and sustain growth over time. However, the time of onset of growth phases (T1 through T5) 
showed insignificant or poor correlation. This may be due to differences between varieties and variations in 
environmental conditions, which affect growth timing but not necessarily final cotton yield. Linear regression 
of Rmax with cotton yield also suggest that maximum growth rate shows potential as an indicator for estimating 
cotton yield, although its predictive strength varies across years and environments (Fig. 8).

Assessing the maturity of cotton using growth parameters
Maturity rating of cotton cultivar was assessed using T5 growth parameter. Twenty varieties from the 2021 season 
with documented maturity ratings as short season, medium season, and full season were selected45. Using the 
information from this previous study, we classified T5 values ≤ 80 DAP as short season, values between 81 and 90 
as medium season, and values above 90 as full season. Overall classification accuracy was 80% (Table 6). Good 
accuracy in rating maturity in cotton cultivars using T5 growth parameter showed that cotton varieties with 
early onset of steady phase had early physiological maturity. This is because the onset of steady phase coincides 
with ceasing of vegetative growth and beginning of flowering, followed by boll formation and development, and 
physiological maturity is the only way forward for a cotton plant.

Discussion
Model performance
For our study, the multi-temporal CH data obtained from UAS was analyzed in detail to extract physiologically 
significant growth parameters. The CH data effectively captured growth patterns and developmental stages, 
aligning with prior studies that linked cotton’s morphological traits to its growth phases5. Traits associated with 
plant growth, architecture, and development were generated and analyzed, following approaches outlined in 
earlier research46. By examining growth rates, the study drew strong parallels between plant physiology and 
growth characteristics, consistent with prior findings47,48. Additionally, modeling relative growth rates enhanced 
the analysis of growth performance and efficiency49. For a detailed evaluation of crop growth over time, non-
linear models such as sigmoidal growth functions were used, which are known for their effectiveness in analyzing 

Fig. 4.  Box plot of canopy height (CH) measurements obtained using UAS in 2016 and 2021. All CH values 
were used without any aggregation for this box plot.
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initial growth stages50. This study uniquely applied these models to UAS-derived data in plant growth research, 
addressing a gap in the current literature. Several logistic growth functions, including 3P, 4P, and 5P models, 
were tested for analyzing cotton growth51,52. The 5P logistic function proved to be the most robust model 
with lowest RMSE (6.41) and highest R2 (0.98) for analyzing multi-temporal CH measurements compared to 
other functions. Its best fit (lowest RMSE and highest R2) can be attributed to its ability to address the inherent 
asymmetry in cotton growth. This additional parameter in the 5P model enabled a better representation of real-

Fig. 5.  Comparing the fit of different growth functions on unoccupied aerial systems (UAS) based canopy 
height (CH) measurements obtained during the 2016 growing season.
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world crop growth processes compared to simpler models like the 4P and 3P logistic functions, which struggle 
with asymmetric data due to delayed saturation phase and prolonged early growth53. Similar studies, such as 
those by Gottschalk & Dunn19 and Pinheiro & Bates50, have emphasized the importance of additional parameters 
for capturing asymmetry in biological systems. Other 5P functions compared in this study such as 5P Weibull, 
also evaluated in this study, can model growth with flexibility but it often requires more parameters to achieve a 
similar fit for complex biological systems leading to overfitting or less intuitive biological interpretations52. The 
5P Sigmoid is capable of modeling S-shaped growth but might not adapt as effectively to the specific growth 

Parameters Physiological event Parameters Physiological event

T2 Onset of linear phase R2 Growth rate at T2

Tmax Time of maximum growth rate Rmax Maximum growth rate at Tmax

T4 End of linear phase R4 Growth rate at T4

T1 Onset of exponential phase DL Duration of linear phase (T4 -T2)

T5 Onset of steady phase DE Duration of exponential phase (T5—T1)

Table 4.  Different parameters that relate to the timing and rate of growth of cotton.

 

Growth functions Fit equation R2 RMSE

3 parameter sigmoid

(
CH = 125.34

1+e

−(DAP −60.73)
11.29

)
0.97 7.55

4 parameter sigmoid

(
CH = −2.69 + 128.45

1+e

−(DAP −60.18)
11.70

)
0.97 7.74

5 parameter sigmoid


CH = 83.63 + 162.71(

1+e

−(DAP −0.02)
0.94

)−41.54


 0.98 6.65

3 parameter logistic

(
CH = 131.41

1+
∣∣ DAP

61.02

∣∣−5.03

)
0.97 7.98

4 parameter logistic

(
CH = 1.65 + 129.20

1+
∣∣ DAP

61.30

∣∣−5.16

)
0.97 8.19

5 parameter logistic


CH = 84.28 + 128.17(

1+
∣∣ DAP

0.02

∣∣−120.23
)−6.98


 0.98 6.41

4 parameter Weibull
(

CH = 122.29 ·
(

1 − e
−|(DAP −7.87)+131.81ln(2)|

131.81

)−c)
0.97 7.17

5 parameter Weibull
(

CH = 60.87 + 131.35 ·
(

1 − e
−|(DAP −19507.12)+354131.68ln(2)|

354131.68

)−9.17)
0.97 7.17

3 parameter Gompertz

(
CH = 130.04 · e−e

−(DAP −54.26)
17.14

)
0.97 8.05

4 parameter Gompertz

(
CH = 2.11 + 127.46 · e−e

−(DAP −54.79)
16.70

)
0.97 8.25

3 parameter Hill
(

CH = 131.41·DAP 5.03
61.025.03+DAP 5.03

)
0.97 7.98

4 parameter Hill
(

CH = 1.65 + 129.20·DAP 5.16
61.305.16+DAP 5.16

)
0.97 8.19

3 parameter Chapman
(

CH = 130.21 ·
(

1 − e−0.06·DAP
)21.98

)
0.97 8.09

4 parameter Chapman
(

CH = 2.40 + 127.26 ·
(

1 − e−0.06·DAP
)25.14

)
0.96 8.28

Table 3.  Statistical measures obtained by fitting different functions with the canopy height (CH) 
measurements. RMSE root mean square error, R2 coefficient of determination.
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Fig. 6.  a 5P logistic growth function, b first-order derivative of the 5P logistic, c second-order derivative of the 
5P logistic with the extracted parameters. Negative values in y-axis of (c) indicate deceleration of growth rate 
after maximum growth.
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patterns of cotton where growth rates slow due to resource limitations, unlike the logistic which naturally 
accommodates this through its parameter structure54.

Growth parameters
The use of the first- and second-order derivatives of the 5P logistic function was the next step to understand 
cotton growth dynamics. Our approach to derive first and second order derivative and use its parameters 
to correlate cotton development has been previously done using 4P logistic function55. Both studies found 
significant correlation between the maximum growth rate (Rmax) (r-value of 0.71 compared to our 0.82), 
identified as the inflection point in the first-order derivative, and the duration of the linear phase (DL) of CH with 
yield. Parameters T2 and T4 represent the transition from exponential to linear growth phases. These parameters 
represent the linear phase duration of 40 to 80 days after emergence and are influenced by environmental and 
genetic variables2,55. We found similar scenario in our study where low rainfall and subsequent drought stress 
caused the duration between T2 and T4 (DL) to be longer than 2021. Additionally, T1 and T5, derived using a 
0.005 threshold in the second order function, are focused on the initial exponential and steady growth phases. 
The T5 parameter signifies the steady growth phase and is linked to boll maturation, with growth rates at T1 
and T5 stages being below 1%, indicative of early lag and saturation phases. During this maturation phase, as 
noted by56, there’s a shift in carbohydrate allocation to developing and mature bolls, leading to reduced canopy 
growth and fewer new nodes or squares, a phenomenon also observed by6. These parameters were instrumental 
in understanding early growth trends and the maturation process in cotton crops. It is worth noting that our 
methodology here involved using 2016 data to build the 5P logistic and its first and second order derivative 
functions. These functions were then fitted using the 2021 dataset (different study with separate sets of cultivars). 

Fig. 7.  Box plots for all the growth parameters of CH from 2016 and 2021. Growth parameters included are 
the time of onset of the exponential phase (T1), the time (T2) and rate (R2) of onset of linear phase, the time 
(Tmax) and rate (Rmax) of maximum growth, the time (T4) and rate (R4) of end of linear phase, the time of onset 
of the steady phase (T5), and duration of linear (DL) and exponential (DE) phases.
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This approach proves the consistency and repeatability of this method across different growing seasons and 
cultivars which is important for agricultural crops.

Genotypic and environmental variations
Growth parameters can be used in understanding drought response mechanisms and their application in 
agricultural research and farming, a trend also observed in the 2016 and 2021 crop data57,58. For example, 
compared to 2021, higher than usual rainfall caused early T1 in 2016 but erratic rainfall later in the season 
caused delayed T4 and T5, longer DL and DE, and lower R2, Rmax and R4. This suggests that cotton adjusted to 
environmental conditions by extending the linear and exponential growth phases while reducing growth rates, 
likely as a drought tolerance strategy44,59. These traits suggest that cotton can optimize its growth dynamics to 
enhance survival and productivity under adverse conditions. Therefore, integrating growth parameters derived 

Referenced data

Short Medium Full Precision F1 score

Classified data

Short 8 0 0 100% 0.89

Medium 2 3 0 60% 0.60

Full 0 2 5 71% 0.83

Recall 80% 60% 100%

Table 6.  Classification of actual and derived maturity ratings of cotton varieties. The metrics were computed 
using one-vs-all classification.

 

Fig. 8.  Relationship between Rmax growth parameter obtained from Canopy height (CH) to yield.

 

Parameters

r-value

2016 2021

T1  − 0.05 0.05

T2 0.28** 0.32**

Tmax  − 0.13 0.45**

T4 0.03 0.13

T5  − 0.18 0.16*

DL 0.55** 0.32**

DE  − 0.27 0.45**

R2 0.62** 0.43**

Rmax 0.67** 0.82**

R4 0.64**  − 0.03

Table 5.  Pearson’s correlation coefficients (r) obtained by correlating the growth parameters obtained with 
yield. Correlation coefficient significant at *P < 0.05; **P < 0.01.
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from UAS data into agricultural research could be used for high-throughput phenotyping of cotton for drought 
tolerance60. By using parameters such as Rmax, DL and DE researchers can pinpoint cultivars with enhanced 
drought resilience. This can help with precision farming practices as well for variable rate irrigation management 
in a water-limited environment.

Yield and maturity
Previous studies have discussed the use of mathematical functions in plant growth analysis and showed 
significant variations in growth parameters among different cotton varieties10. We used such variation in our 
study to estimate cotton maturity type using growth parameters T5. By classifying cotton cultivars based on 
their DAP to T5 values (with 80% accuracy in our study), researchers can better understand and assess how 
different varieties will mature under various environmental conditions. This knowledge is crucial for selecting 
cultivars that align with specific growing seasons or climates, thereby optimizing planting schedules, irrigation, 
and harvest timing. For farmers, knowing the maturity type can lead to more precise agricultural management, 
enhancing yield quality by ensuring that each variety is harvested at its peak maturity, which in turn affects 
fiber quality and market value. It is noteworthy to mention here that T5 (end of steady growth phase) being 
related to cotton maturity has to do with its growth physiology. Cotton crop growth habit enables the plant to 
simultaneously produce vegetative and reproductive structures61. As the fruit load develops, the demand for 
carbohydrates and nutrients increases in proportion to the number of developing fruits. However, the supply 
of carbohydrates reaches a limit which is set by canopy light interception. When the demand for carbohydrates 
exceeds the supply, the crop temporarily pauses its vegetative growth and begins a phenomenon commonly 
named as “cutout”2, which represents physiological maturity. Cotton crop maturity is a complex trait and is 
associated with yield, fiber quality, and net returns.

Growth parameters like Rmax, R2, DL, and DE showed significant correlation with cotton yield. This might 
have been because the high early to maximum growth rate translates to taller plants with potentially higher 
leaf area, a greater number of nodes and branches leading to more squares. Moreover, the linear growth phase 
of cotton begins at branch development stage and ends at pin head square stage, physiologically crucial stages 
for better reproductive growth in cotton2,62. Yield estimation using growth parameter Rmax suggests that mid-
season yield predictions can be made with significant accuracy. Such estimations allow researchers to evaluate 
the efficacy of new cultivars or agricultural techniques under real-world conditions, while farmers can optimize 
resource allocation, like water and nutrients, for maximum yield potential. Seed cotton yield in 2016 was lower 
than 2021 which could be due to erratic rainfall and drought stress during mid to late season leading to poor 
reproductive growth. However, the comparative analysis between 2016 and 2021 showed that yield estimation 
was less accurate in 2016 (R2 of 0.46 compared to 0.68 in 2021). Also, average Rmax value in 2016 (2.75 cm day-1) 
was half that of 2021 (5.95 cm day-1) but average yield in 2016 (1301 kg ha-1) was about two-thirds of 2021 
(1987 kg ha-1); and final CH were similar (123 cm and 125 cm) in both years. This shows that though drought 
stress affected growth rates, cotton plants compensated for the drought at later stages. Previous drought studies 
on cotton have explained the physiology behind this compensatory effect63. High overall accuracy (80%) in 
rating maturity in cotton cultivars using T5 growth parameter showed that cotton varieties with early onset of 
steady phase had early physiological maturity. This is because the onset of steady phase coincides with ceasing of 
vegetative growth and beginning of flowering, followed by boll formation and development, and physiological 
maturity is the only way forward for a cotton plant. Its use in maturity classification generally aligns with crop 
growth dynamics, with full-season varieties showing clear separation. However, medium-maturity varieties were 
more ambiguous, with lower F1 score (0.60). This could be due to overlapping physiological timing and natural 
variation in growth rates. The high F1 scores for short (0.89) and full (0.71) season types indicate that early 
and late transitions are more distinct. However, limited sample size (n = 20) constrains the robustness of these 
classifications. Further studies with more sample number could improve the reliability of T5 as a physiological 
maturity indicator.

Limitations and future work
This study discussed that the compensatory effect mainly affected leaf area, root biomass and reproductive parts 
such as bolls and fiber. This scenario highlights a limitation of using CH for growth parameter analysis in cotton, 
where abnormal environmental factors can significantly influence the accuracy of yield predictions. However, it 
is important to note that we used CH because it could be measured reliably using UAS. Our priority was using 
UAS for cotton phenotyping to be used for growth parameter study as a proof of concept. Further studies are 
required to use UAS measured phenotypes such as canopy cover, canopy volume, lateral growth, total leaf area, or 
node count for growth parameter study. Moreover, this study did not account for management and architectural 
traits such as growth regulator application or fruit branch density. Incorporating these factors could further 
refine UAV-based growth assessments in future work. However, as plants structures become more complex, their 
increasing leaf, stem size and number lead to more obstruction complicating plant growth analysis and UAS data 
collection64,65.

Conclusion
The use of UAS derived plant phenotypes combined with nonlinear growth models improved characterization of 
the indeterminate growth patterns of cotton. 5P logistic model providing the best fit due to its ability to capture 
asymmetry in growth data. Second order derivatives of this model were used to extract growth parameters 
describing the rate and timing of growth which showed correlations with yield outcomes. Mid-season parameters 
such as Rmax, representing peak growth rate, can estimate potential yield and can inform management of inputs 
like water, fertilizers, and growth regulators. T5, marking the onset of the steady growth phase, was used to 
classify cotton maturity types, achieving 80% accuracy for short, mid, and full season varieties. This classification 
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can support better timing of planting, irrigation, and harvest to optimize fiber quality and yield. Environmental 
variability, such as drought in 2016, reduced prediction accuracy and represents the influence of conditions 
beyond CH on yield. Incorporating additional UAS derived traits such as canopy cover, volume, or spectral 
indices, could improve growth modeling under diverse conditions and enhance cultivar evaluation for breeding 
programs. The spatiotemporally high resolution data enabled by UAS provides valuable opportunities to advance 
crop growth analysis and management. These methods may be extended to other crops and environments to 
support more resilient and productive agriculture.

Data availability
The datasets generated are not publicly available because they are being used to prepare other manuscripts but 
are available from the corresponding author on reasonable request.
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