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Abstract
Roots are critical for supporting basic plant functions such as anchoring in various

substrates, uptake of water and nutrients, and hosting symbiotic relationships. In

crops, indirect changes to root system architecture (RSA) have occurred largely as

a result of selection for yield or other related aboveground traits. In cultivated soy-

bean (Glycine max (L.) Merr.), evidence of changes to RSA resulting from breeding

for crop performance has been inconsistent, with some studies supporting an over-

all decrease in performance-related trait values, such as root length and density, and

other work showing the opposite. The current study sets out to ask whether there is

any systematic differentiation in RSA between a set of elite breeding lines (n = 8) of

soybean developed for the Midwest United States and a group of diversity lines from

the USDA Soybean Germplasm Collection (n = 16). Groups are compared across

three distinct developmental stages (V2–V6, V7–R2, and R3–R7) and two contrast-

ing soil environments. In total, 432 root systems were phenotyped for 12 structural

traits derived from two-dimensional images along with root and shoot biomass. A

new three-dimensional root modeling approach leveraging photogrammetry-derived

pointclouds is additionally tested on a subset of 30 contrasting root systems. Results

indicate that the diversity lines had smaller root systems overall but greater phe-

notypic plasticity in response to soil environment as compared to breeding lines.

Plants grown in clay loam soil had reduced taproot length (14.2%), root biomass

(18%), root volume (22.9%), root spread (22.7%), and average root diameter (7.6%)

compared to sandy loam soil. In addition, root traits showed generally low heritabili-

ties. Overall mean heritabilities were found to be highest in the earlier timepoint and

declined over time. Maximum taproot diameter (H2 = 0.37 and h2 = 0.21) and max-

imum lateral branch length (H2 = 0.22 and h2 = 0.13) were the most heritable traits.

Abbreviations: BL, breeding lines; DL, diversity lines; DSLR, digital single-lens reflex; G × E, genotype-by-environment; LDA, linear discriminant analysis;

PCA, principal components analysis; PPAC, Pinney Purdue Agricultural Center; RSA, root system architecture; SNP, single nucleotide polymorphism.
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Furthermore, the study finds evidence for trade-offs between aboveground and

belowground trait plasticity.

Plain Language Summary
Root systems are important for plants to absorb water and nutrients from the soil. To

improve crop performance, we need to understand the structure and behavior of root

systems. Collectively, the structural components of root traits are called root system

architecture (RSA). This study compares the RSA of elite soybean breeding lines

developed for the US Midwest and diverse lines from around the world. We com-

pare them across different soil types and developmental stages. The main goal was to

see how modern breeding may have influenced root system traits. We found that the

diversity lines generally showed smaller RSA values but showed greater plasticity to

different soil environments. We also found evidence for trade-offs between above-

ground and belowground traits. These results support the potential of considering

root systems in breeding programs to improve crop resilience.

1 INTRODUCTION

The root system provides essential functions for the whole

plant. These include anchoring, facilitating symbiotic part-

nerships with soil microorganisms, and serving as the initial

conduit for nutrient and water uptake (McNear, 2013).

Understanding the relationships between root traits and their

connections to aboveground features has been a key area of

interest in the plant sciences (O’Toole & Bland, 1987; Watt

et al., 2006). Recently, there has been growing focus on har-

nessing root traits to enhance crop resource utilization (Lynch,

2019; Tracy et al., 2020); this is especially critical as cli-

mate change negatively impacts soil conditions, motivating

the development of more resilient crop varieties that can thrive

with fewer inputs.

Modifications to the root system as part of varietal crop

improvement have largely occurred through indirect selec-

tion on yield and other aboveground performance metrics

rather than direct selection on root traits themselves (York

& Lynch, 2015). For instance, in commercial maize (Zea
mays L.) hybrids, empirical breeding for yield has resulted

in smaller root systems over the course of 80 years (Rinehart

et al., 2024). Similarly, modern high-yielding wheat (Triticum
aestivum L.) varieties boast fewer roots per plant than historic

varieties (Fradgley et al., 2020). In rice (Oryza sativa L.),

deeper rooting conferred by higher expression of the DRO1
gene, gives rise to greater yields under drought conditions

(Uga et al., 2013). These kinds of insights highlight the impor-

tant role that root systems can play in crop improvement,

especially for resource-limited environments, and strategies to

incorporate direct selection on root traits by combining lab-

oratory and field phenotyping have been proposed (Wasson

et al., 2012). However, several challenges to successful direct

selection of root system traits by breeding programs remain,

including the relatively low heritabilities of root-related traits

that are associated with strong genotype-by-environment

(G × E) interactions and phenotypic plasticity (Comas et al.,

2013; Malamy, 2005; Robinson, 2001; Tuberosa et al., 2002).

G × E interactions refer to the differential responses of

genotypes to varied environments. These interactions can

complicate varietal selection, especially if they result in geno-

type rank changes across environment (e.g., locations or

years). G × E is conceptually and functionally related to

phenotypic plasticity, which refers to modification of traits

generally of single genotypes in response to change(s) to the

environment. Plasticity is conferred by changes in physiol-

ogy, anatomy, morphology, and/or resource allocation and is

regarded as genetically controlled (Bradshaw, 2006; Sultan,

2000). Plasticity can be adaptive or maladaptive depending

on the fitness consequences. Adaptive plasticity can improve

fitness by maintaining or improving performance under stress

or in a novel environment (Sultan, 1995). On the other hand,

maladaptive plasticity can reduce fitness by carrying energetic

or metabolic costs that outweigh their benefits (Van Kleunen

& Fischer, 2005). In the context of varietal crop improvement,

greater phenotypic plasticity has been considered by some to

be promising for low-input systems, enabling genotypes to

acclimate to stress scenarios (Lynch, 2019; H. M. Schneider &

Lynch, 2020). However, it is important to note that plasticity

at one level of biological organization may be responsible for

stability at another. Moreover, greater plasticity is not inher-

ently adaptive and may simply be an inevitable consequence
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of resource limitation (Ghalambor et al., 2007; Sultan, 2015;

Van Kleunen & Fischer, 2005).

In soybean (Glycine max L. Merr.), a globally important

source of plant-based protein for both humans and animals,

there is conflicting evidence for the effects that modern breed-

ing has had on root systems. Recent work comparing 11

genotypes, including elite breeding lines (BL) and exotic

germplasm, for root traits under rainfed conditions suggested

that a parsimonious root system, characterized by reduced

number of axial roots and reduced lateral root length and

density, is beneficial under high-input environments and a

potential reason for superior biomass formation in elite BL

(Noh et al., 2022). These results contrast with those from

another study, which directly examined root system traits

across soybean varieties released across different eras; it sug-

gested that root biomass, root volume, root length, root surface

area, and root-shoot ratio increased over time (Mandozai et al.,

2021). One complicating factor for studies on soybean root

variation is that root development is linked to plant growth

stages, with distinct patterns emerging throughout the plant’s

lifecycle. During vegetative growth, rapid root growth occurs,

and as the plant transitions to early reproductive stages, root

branching becomes more prominent. Finally, root growth gen-

erally decreases during pod development (Hoogenboom et al.,

1987). Despite the impact of overall plant development on

root traits, research that explicitly considers developmental

stages has been limited, and more comprehensive studies

that sample roots across multiple growth stages are needed

(Ordonez et al., 2020).

Developments in phenotyping methods that reduce the

labor involved in collecting root trait measurements open

up new opportunities for addressing fundamental questions

about how root trait variation is partitioned across genetics,

environments, and growth stages. Recent advancements have

enhanced researchers’ ability to understand key root traits that

benefit crops, aiding in the selection of improved varieties

(Kuijken et al., 2015; P. Song et al., 2021). Two-dimensional

(2D) imaging using digital cameras is now considered a

conventional approach in root phenotyping, with software

platforms readily available to researchers for image anal-

ysis such as WinRhizo (Regent Instruments), open-source

ImageJ (C. A. Schneider et al., 2012), and the open-source

RhizoVision Explorer for high-throughput root image anal-

ysis (Seethepalli et al., 2020). The integration of modern

imaging technologies, such as magnetic resonance imaging,

X-ray computed tomography, and positron emission tomog-

raphy, also enables more precise three-dimensional (3D)

measurements than were possible before (Atkinson et al.,

2019; Messina et al., 2021; Stingaciu et al., 2013). However,

portable 3D imaging approaches that do not rely on expensive

technologies are not yet widely accessible to researchers, and

2D imaging remains the standard approach.

In the current study, we compared root traits among 24

diversity and BL of soybean across three growth stages at two

Core Ideas
∙ Previous work suggests crop root system archi-

tecture (RSA) has changed as a result of indirect

selection.

∙ This study compares RSA in modern breeding

lines with that of diverse accessions in cultivated

soybean (Glycine max (L.) Merr.).

∙ A total of 432 root systems are analyzed across

24 genotypes, two soil environments, and three

developmental stages.

∙ Findings show diversity accessions have smaller

root systems but greater plasticity in response to

soil environment.

locations with differing soil environments. In total, 432 indi-

vidual soybean root systems were collected and 2D imaged

to extract root architectural traits. To address the need for

more cost-effective 3D phenotyping approaches, we addi-

tionally tested the utility of a new analytical framework to

reconstruct 3D root models from 2D images collected eco-

nomically using a common digital single-lens reflex (DSLR)

camera and a portable turntable phenotyping system. Our

overall objectives were to (1) determine whether there were

differences in root traits between modern breeding lines

(BL) and diverse germplasm accessions, referred to here

as diversity lines (DL); (2) quantify the relative effects

of genotype group, environment, and their interaction on

root traits; and (3) compare features derived from 3D root

models with traits measured using conventional 2D image

analysis.

2 MATERIALS AND METHODS

2.1 Plant materials

Twenty-four soybean genotypes were evaluated for this study

(Table S1). Sixteen of these, hereafter referred to as the DL,

were selected from the USDA Soybean Germplasm Collec-

tion and originated from seven different countries (the United

States, Japan, China, South Korea, Russia, Vietnam, and

the Netherlands) (Figure 1). These accessions were selected

from a larger set of 250 USDA accessions that were ini-

tially evaluated in 2021 at the Pinney Purdue Agricultural

Center (PPAC, Wanatah, Indiana). The 16 DL were able

to flower and mature under Indiana conditions and were

selected based on phenotypic variation of several above-

ground variables, including specific leaf area, plant height,

and leaf-level stomatal conductance. Eight additional lines,

hereafter referred to as the BL, were additionally selected for

this study. The BL originated from a larger breeder-nominated
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4 of 14 BOGATI ET AL.Crop Science

F I G U R E 1 Study overview. (a) Diagram showing the study’s experimental design with 24 soybean genotypes classified into two genotype

groups (diversity lines and breeder lines), two soil environments (clay loam and sandy loam), and three developmental timepoints. All root samples

were phenotyped using two-dimensional (2D) imaging (n = 432), and a subset (n = 30) was additionally measured using a three-dimensional (3D)

reconstruction approach. (b) An example of a 2D root image taken of one of the breeding lines, G5, sampled from timepoint two in the clay loam site.

(c) An example from 3D reconstruction of the same root sample, shown here at a different angle.

set of germplasm known as the Public Biomass Panel, which

was comprised of germplasm developed for production in

the US Midwest. These additional eight BL were selected to

represent the range of phenotypic variation observed in the

full panel based on preliminary data gathered in 2021, also

for specific leaf area, plant height, and leaf-level stomatal

conductance.

2.2 Genotyping

All DL were previously genotyped using SoySNP50K, a

50K genome-wide single nucleotide polymorphism (SNP)

beadchip. The BL were genotyped for the current study using

the BARCSoySNP6K Assay, a 6K genome-wide SNP bead-

chip (Q. Song et al., 2013, 2015); critically, these 6K SNPs

were a direct subset of SoySNP50K, enabling combined

analyses with DL. The GenomeStudio Genotyping Module

v2.0.5 (GenomeStudio Software Downloads [illumina.com])

was used to extract the genotypes from 6K. A customized R

script was used to merge 6K SNPs with 50K dataset based on

position, as both the files were aligned to soybean reference

genome Wm82.a2 (https://daxta.soybase.org/Glycine/max/

diversity/Wm82.gnm1.div.Song_Hyten_2015/glyma.Wm82.

gnm1.div.Song_Hyten_2015.vcf.gz).

2.3 Experimental design and data
collection

The study was carried out during the growing season (May

through October) of 2022 at the PPAC in Wanatah, Indi-

ana (longitude: −86.928948, latitude: 41.442025), located in

Indiana’s northwest region (Figure S1a). During the growing

 14350653, 2025, 6, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/csc2.70190, W

iley O
nline L

ibrary on [04/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://daxta.soybase.org/Glycine/max/diversity/Wm82.gnm1.div.Song_Hyten_2015/glyma.Wm82.gnm1.div.Song_Hyten_2015.vcf.gz
https://daxta.soybase.org/Glycine/max/diversity/Wm82.gnm1.div.Song_Hyten_2015/glyma.Wm82.gnm1.div.Song_Hyten_2015.vcf.gz
https://daxta.soybase.org/Glycine/max/diversity/Wm82.gnm1.div.Song_Hyten_2015/glyma.Wm82.gnm1.div.Song_Hyten_2015.vcf.gz


BOGATI ET AL. 5 of 14Crop Science

season, PPAC had an average air temperature of 18˚C and

an average soil temperature of 19.5˚C (Figure S1b). Cumu-

lative precipitation during the season was approximately

423.7 mm (about 16.68 in.). The experiment was conducted

at two locations (environments) within PPAC approximately

2.6 km apart. The locations differed in soil properties; one

was characterized as a sandy loam, while the other was a clay

loam. Soil analysis (soil nutrients organic matter, phospho-

rous, potassium, magnesium, calcium, sodium, copper, zinc,

sulfur, and boron), soil texture (sand, silt, and clay), bulk den-

sity, water holding capacity, soil pH, buffer pH, and cation

exchange capacity were carried out at the A & L Great Lakes

Laboratories (Fort Wayne, Indiana) prior to planting. In addi-

tion to soil texture, the two sites differed according to water

holding capacity, cation exchange capacity, and several nutri-

ents (Figure S1c). In this experiment no fertilizer was added,

as we intended to assess the plant responses under natural soil

nutrient conditions. Similarly, the experiment relied on nat-

ural rainfall, which is consistent with the local management

practice.

Within each location, fields were planted following a ran-

domized complete block design with 24 genotype entries and

three blocks. Each site was planted in single-row plots that

were 3 m in length (2.1 m short rows with 0.9 m alley).

Seeds were hand planted to a depth of approximately 2.5 cm

because of limited seed availability and the small plot sizes.

The previous crop was corn at both sites. Across all genotypes,

plants were destructively sampled from both sites at three

time points—TP1 (June 27–July 14), TP2 (July 15–August

3), and TP3 (August 4–August 18)—roughly corresponding

to growth stages V2–V6 (second to sixth trifoliate), V7–R2

(seventh trifoliate [corresponding to early flowering in most

genotypes] to full bloom), and R3–R7 (beginning pod to

beginning maturity), respectively. Each site was planted in

single-row plots that were 3 m in length (2.1 m short rows with

0.9 m alley). Seeds were hand planted to a depth of approx-

imately 2.5 cm because of limited seed availability and the

small plot sizes. The previous crop was corn at both sites.

Prior to any losses, the full experimental sample consisted of

432 plants (24 lines × three spatial blocks/site × two sites ×
three timepoints). During each sampling event, one plant was

selected randomly per plot, avoiding border plants. Individ-

ual plants were excavated with round point shovels (Expert

Gardener Wood & Steel Round Point Shovel), with the cylin-

drical soil core approximately 30 cm in diameter and 30 cm in

depth, centered around the main stem. In the Sandy Loam site,

the excavation was straightforward due to the loose soil struc-

ture; however, the Clay Loam site required slower digging

and manual breaking of clods to minimize the root damage.

Roots and shoots were separated and dried: shoot samples

were dried at 60˚C and weighed, while root samples were

washed with water and then air-dried. Once dried, root sam-

ples were stored in the freezer in Ziploc bags. After the field

season ended, imaging and trait analysis was performed on

clean, dry samples.

2.4 Two-dimensional imaging and trait
extraction

Images were collected using an imaging platform comprised

of a copy stand (Kaiser RS 2 CP Copy Stand), light box,

DSLR camera (Canon EOS Rebel T7 DSLR Camera with EF-

S 18–55 mm f/3.5-5.6 IS II lens; Canon Inc.), and clear plastic

trays on which samples were spread (Figure S2). Root sam-

ples were placed on trays oriented to minimize the occlusion

of lateral roots. Resultant digital images were analyzed using

both WinRHIZO (Regent Instruments) and ImageJ version

2.16.0/1.54p (https://imagej.net/ij/). WinRHIZO was used to

automatically detect and segment root samples and quan-

tify six traits using built-in analysis options (Table 1). Using

ImageJ, an additional six traits were quantified (Table 1). For

taproot diameter, four to five random diameters across the tap

roots were measured, and the maximum was used for eventual

analysis. Similarly, four to five random root angles were mea-

sured in ImageJ and the average root angle was computed for

each sample. For lateral branch length, four to five random lat-

eral branches were selected in ImageJ and their lengths were

measured; the maximum value was eventually used for subse-

quent analyses. Additional details on ImageJ trait extraction

are provided in Figure S3.

2.5 Three-dimensional imaging and trait
extraction

To assess the feasibility and usefulness of 3D modeling, a sub-

set of the roots was selected for 3D scanning (n = 30). From

each developmental timepoint, approximately equal samples

from each soil environment were selected, randomly sampling

across genotypes. Close range photogrammetric scanning was

used to generate an initial 3D point cloud of the selected

samples. Each root sample was clamped into a holder on a

turntable (Figure S2). As the turntable rotated, a Sony DSLR

camera (Sony Alpha a7 II with 24.3MP full-frame Exmor

CMOS sensor; Sony Corporation) captured photos every 5˚

around the sample at a resolution of 5304 px by 7952 px.

A small aperture (f/22) was maintained to create the largest

depth of field possible during the image capture process.

This allowed the lateral branches of each root to remain in

focus even as they rotated toward and away from the cam-

era position. After capture, Agisoft’s Metashape was used

to implement structure-from-motion 3D reconstruction. This

method of reconstruction produced a scaleless point cloud of

each root sample. The number of points varied widely by the

size of the root. Samples from the first timepoint were repre-
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T A B L E 1 Summary of root traits measured.

Trait name Unit Trait description Method
Tap root length mm Length of the tap root in mm ImageJ, 3D

Total root length mm Cumulative sum of lengths of all root segment lengths WinRHIZO, 3D

Surface area mm2 Total outer area encompassed by the roots within a root system WinRHIZO, 3D

Average root diameter mm Average thickness within the root system WinRHIZO, 3D

Root volume mm3 Total volume of roots present within a given sample or area WinRHIZO

Tips count Number of terminal end points of the roots WinRHIZO, 3D

Forks count Number of points where roots spilt into two or more branches WinRHIZO, 3D

Nodules count count Number of root nodules per root system ImageJ

Average root angles degree Average root angles from the horizontal surface parallel to

putative soil surface

ImageJ

Root spread mm2 Area represented by convex hull encompassing the root system ImageJ, 3D

Maximum tap root diameter mm The maximum tap root diameter sampled ImageJ, 3D

Maximum lateral branch length mm Length of the longest lateral branch sampled ImageJ ,3D

Root biomass g Dry weight of sample (conventional)

Cumulative volume mm3 Sum of the volume of all root segments 3D

Total volume of the taproot mm3 Total volume of the taproot 3D

Abbreviation: 3D, three-dimensional.

sented by approximately 200,000 points, while samples from

the last timepoint were represented by nearly 6-million points.

We scaled the point cloud to correct dimensions using scale

references attached to the turntable prior to imaging. After

3D reconstruction, a hierarchical cylinder model of each root

was generated from the point cloud. Full details about the

3D reconstruction method may be found at Carpenter et al.

(deposited on bioRxiv; https://doi.org/10.1101/2025.05.06.

652473).

2.6 Statistical analysis

Results were visualized using either R version 4.4.1 with the

ggplot package (Wickham, 2011) or Python version 3.10.12

(Van Rossum & Drake, 2009) with the packages, Matplotlib
version 3.4.2 and seaborn version 0.11.2. For SNP data,

principal components analysis (PCA) and hierarchical clus-

tering analysis were carried out using FactoMineR (Lê et al.,

2008) and base R, respectively, with the “complete” agglom-

eration method. For trait data, PCA was carried out with

Python library scikit-learn version 1.3.2 (Pedregosa et al.,

2011) using the “sklearn.decomposition” module. Trait data

were first averaged for each genotype by timepoint combina-

tion, and variables were standardized prior to calculation of

the covariance matrix for PCA. Fisher’s linear discriminant

analysis (LDA) was carried out to determine the relative con-

tribution of root traits and shoot biomass to the separation

of breeder and DL. This process was applied to each time-

point separately. To account for different scales, predictors

were standardized prior to applying LDA. Target classes for

separation were the two genotype categories, that is, breeder

lines and DL. Fivefold cross-validation was used for model

development, and average LDA coefficients across the five

folds were calculated for each predictor for each timepoint.

These coefficients were visualized as heatmaps to display the

relative importance of each trait in distinguishing the two

genotype categories. Relative change in traits in response to

soil environments was computed for each genotype and time-

point using the following formula: (traitCL − traitSL)∕traitavg,

where traitCL indicates the trait value under clay loam con-

ditions, traitSL indicates the trait value under sandy loam

conditions, and traitavg indicates the average trait value under

both conditions. Heatmaps of Pearson correlations of rela-

tive changes between shoot biomass and all root traits were

generated using the corrplot R package (T. Wei et al., 2017).

To estimate the effect of soil environment (sandy loam or

clay loam), genotype group (breeding line or diversity line),

and their interactions on root traits observed by 2D imaging,

a linear mixed effects model was fit using the “lmer” func-

tion from the lme4 package in R (Bates et al., 2015). The

three main assumptions (linearity, normality of residuals, and

homoscedasticity) were tested and found to be met. The model

was specified as follows:

𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝐺𝐺𝑗 + 𝐸𝑘 + 𝐺𝐺𝑗 × 𝐸𝑘 + 𝐴𝑖(𝑗) + 𝑇𝑃𝑙 + ∈𝑖𝑗𝑘𝑙.

(1)

In Equation 1, 𝑌𝑖𝑗𝑘𝑙 is the trait value, 𝜇 is the mean, 𝐺𝐺𝑗

is the fixed effect of genotype group j, 𝐸𝑘 is the fixed effect

of the environment k, 𝐺𝐺𝑗 × 𝐸𝑘 is the interaction effect of

genotype group j and environment k, 𝐴𝑖(𝑗) is the random

effect of genotype i nested within genotype group j, 𝑇𝑃𝑙

 14350653, 2025, 6, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/csc2.70190, W

iley O
nline L

ibrary on [04/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1101/2025.05.06.652473
https://doi.org/10.1101/2025.05.06.652473


BOGATI ET AL. 7 of 14Crop Science

is the random effect of timepoint l, and ∈𝑖𝑗𝑘𝑙 is the resid-

ual error. In this model, the fixed effects were environment,

genotype group, and their interactions. To quantify poten-

tial interactions between environment and specific genotypes

across different sampling timepoints, we fit additional linear

models for each of the three timepoints. One complicating

factor for studies on soybean root variation is that root devel-

opment is linked to plant growth stages, with distinct patterns

emerging throughout the plant’s lifecycle. Thus, the time-

points were considered separately. The model was specified

as follows:

𝑌𝑖𝑗𝑘 = 𝜇 + 𝐺𝑖 + 𝐸𝑗 + 𝐺𝑖 × 𝐸𝑗 + ∈𝑖𝑗𝑘. (2)

In Equation 2, 𝑌𝑖𝑗𝑘 is the trait value, 𝜇 is the mean, 𝐺𝑖

is the fixed effect of genotype i, 𝐸𝑗 is the fixed effect of

the environment j, 𝐺𝑖 × 𝐸𝑗 is the interaction effect of geno-

type i and environment j, and ∈𝑖𝑗𝑘 is the residual error.

Broad-sense heritability for each root trait was estimated using

linear mixed models fitted with the R-package lme4 (Bates

et al., 2015). Genotype was treated as a random effect and

variance components were used to calculate broad-sense her-

itability. Narrow-sense heritability was estimated using the

sommer package (Covarrubias-Pazaran, 2016). Models were

fitted using the “mmes” function with genotype modeled as

a random effect and the genomic kinship matrix specified via

the “vsm” function. Narrow-sense heritability was calculated

as the ratio of additive genetic variance to the total phenotypic

variance, as follows:

ℎ2 =
𝜎2
𝑔

𝜎2
𝑔
+ 𝜎2

𝑒

, (3)

where ℎ2 is the narrow sense heritability, 𝜎2
𝑔

is the additive

genetic variance, and 𝜎2
𝑒

is the residual variance.

3 RESULTS AND DISCUSSION

3.1 Genetic differentiation of genotype
groups

Results from PCA and hierarchical clustering using 6K

genome-wide SNPs supported the strong differentiation of

lines according to their originating source: the breeder lines

developed for US Midwest high input production environ-

ments (BL group) versus DL selected from the USDA

Soybean Germplasm Collection (DL group) (Figure S4).

Interestingly, there was one US line (cv. Lincoln) from the

DL group, which, despite being developed for production in

the US Midwest by Illinois Agricultural Experimental Station

(Weiss, 1953), grouped along with the rest of the DL. Lin-

coln was developed over 70 years ago and subsequently used

as the parent in other crosses. For our study, this line serves

as a baseline of comparison between historical US varieties

and the modern elite lines of the BL group. PC1 of the PCA

explained 38.9% of total variance and clearly separated the BL

and DL. PC2 explained 10.7% of total variance and accounted

for within-DL variation. The cultivar, Lincoln, was the closest

diversity line to the BL group along the PC1 axis and mapped

in line with the BL along the PC2 axis, consistent with its US

origins. Having observed this strong differentiation between

the genotype groups of BL and DL, we next examined root

trait variation as it related to genotype group.

3.2 Trait relationships are affected by
growth stage and genotype group

Correlation matrices of the 12 root system architecture (RSA)

traits, root biomass, and shoot biomass were analyzed for

the entire dataset as well as for data subsets divided by

timepoints and genotype groups. Positive correlations were

prevalent in the overall dataset (Figure S5a). However, this

was likely due to high levels of root system growth across

developmental time, especially between TP1 and TP2, lead-

ing to larger values of all traits across timepoints, resulting

in positive correlations throughout and potentially masking

some true negative correlations. Indeed, when data were sep-

arated by timepoints, both positive and negative correlations

emerged (Figure S5b–d). For example, negative correlations

were found between root diameter and number of forks

(r = −0.32) and number of tips (r = −0.52), suggesting

a trade-off between root diameter and branching structures

consistent with previous studies (Comas & Eissenstat, 2009;

Eissenstat et al., 2015). This trade-off could be related with

differential allocation strategy. In other words, thicker roots

may provide benefits for improved soil penetration as well as

anchorage, whereas greater branching could improve nutrient

uptake. Thus, developing crop ideotypes may require balance

of these traits depending on the available resources in the soil.

Positive correlations, such as those between root biomass and

RSA traits (root volume, root surface area, and root diameter),

were observed to increase throughout development. Nodule

count was generally uncorrelated with RSA or biomass traits,

except for a weak negative correlation with average root angle

during the earliest timepoint (r = −0.25). This result sits in

contrast with earlier reports of positive correlations between

nodules and shoot/root weight at the R3 developmental stage

(Sinclair et al., 1991).

Quantifying the similarity between trait relationships

across time, Spearman’s correlation, rs, between matrix pairs

showed that relationships in TP2 and TP3 were more similar

to each other (r = 0.88) than either of those timepoints were

with TP1 (r = 0.76 between TP1 and TP2; r = 0.78 between

 14350653, 2025, 6, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/csc2.70190, W

iley O
nline L

ibrary on [04/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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TP1 and TP3). This could be due to the transition between

vegetative and reproductive phase that occurred around TP2,

whereas TP1 represented early vegetative growth. Comparing

correlation matrices between BL and DL across timepoints,

trait correlations tended to be stronger (in both negative

and positive directions) in the breeder line group (Figure

S6). Spearman’s correlation of the matrices across time-

points showed higher values (rs values of 0.57, 0.59, and

0.65 for timepoint pairs) compared to the diversity line group

(rs values of 0.48, 0.31, and 0.58 for the same timepoint

pairs).

3.3 Root trait variation can differentiate
genotype groups

Principal component analysis of trait data, averaged across

replicates and environments, revealed that PCs 1 and 2

together accounted for ∼80% of total variation (PC1: 64.22%;

PC2: 15.05%) (Figure 2a). Evaluating the loadings of each

trait variable, we observed that traits such as surface area

(loading = 0.98), root volume (0.96), and total root length

(0.95) were the top contributors to PC1. With regard to PC2,

shoot biomass (0.83), maximum tap root diameter (0.77), and

maximum lateral branch length (0.66) were the main contrib-

utors. PCA additionally revealed clusters that corresponded

to specific combinations of genotype group and timepoint,

suggesting there were stark phenotypic differences among

these groups; PC1 was aligned with the sample timepoint,

while PC2 could be explained by genotype group (BL versus

DL). When comparing observations from TP1 versus TP2 and

TP3, we observed that TP1 formed a tighter cluster and was

strongly separated from the other two groups, consistent with

the greater similarity between TP2 and TP3 trait relationships

described earlier. The TP1 sampling corresponded to early

vegetative development (V2–V6), and as plants matured in

TP2 and TP3, their traits may have had increased influence

from interactions between the genotype and the temporally

varying environment, leading to differential resource alloca-

tions and more variation among observations (Gratani, 2014;

Sultan, 2000). Comparing clusters of BL versus those formed

by DL, we noted that observations from the BL group were

less dispersed than those from the DL group in the PC1–PC2

space. This could be a result of decreased genetic variation

in breeding germplasm as compared to DL (Hyten et al.,

2006). Alternatively, this may reflect the greater number of

DL evaluated in our panel.

We next investigated which traits jointly contributed the

most to the differentiation between DL and BL genotype

groups. Fisher’s LDA coefficients indicated that the top con-

tributing traits were generally consistent across timepoint

(Figure 2b–e). For example, shoot biomass, total root length,

and root volume ranked in the top five predictors across all

three timepoints. In addition to those three traits, other strong

contributors to the discriminant score were maximum taproot

diameter and surface area (in TP1), number of forks and root

biomass (in TP2), and surface area and average root diameter

(in TP3). Although previous work on root trait variation in a

large collection of soybean germplasm, including elite culti-

vars and DL, also found differentiation among these groups,

the traits likely responsible were not examined (Prince et al.,

2020).

3.4 Evidence for greater root plasticity in
response to different soil environments in
diverse soybean lines

To quantify the effects of genotype group, soil environment,

and their interaction on individual traits, we fitted a mixed

linear model with timepoint as a random variable (Section

2). The main effect of genotype group was not significant

for any trait examined but the main effect of environment

was significant (p < 0.01) for five traits (taproot length, root

volume, root spread, root biomass, and average root diame-

ter). In clay loam soil, each of these traits showed reductions

compared to sandy loam soil (tap root length by 14.20%,

root biomass by 18%, root volume by 22.88%, root spread

by 22.73%, and average root diameter by 7.55%). We specu-

late two different reasons for these results. One, the heavier

textured clay loam soil could have been more difficult for

roots to penetrate as compared to the looser structure found

in the sandy loam environment (Cairns et al., 2011). Two,

lower nutrient and water holding capacity of the sandier

soils may have necessitated greater allocation of resources

to root growth for increased foraging than in the clay loam;

results from soil analysis showed the sandy loam environ-

ment had lower levels of calcium, cation exchange capacity,

and water holding capacity but higher levels of manganese

(Figure S1).

Three traits (maximum lateral branch length, maximum

taproot diameter, and number of tips) showed significant

effects of the interaction between genotype group and envi-

ronment, indicating that the two genotype groups showed a

differential response to changes in soil type. Interestingly,

in all three cases, the group composed of DL was found to

show a much stronger response to the environment (Figure 3).

For maximum lateral branch length, DL was 7.72% longer in

sandy loam than in clay loam soil, whereas BL was barely

affected at 0.49%. Similarly, for maximum tap root diame-

ter, the DL was 9.52% greater in sandy loam than in clay

loam soil, whereas BL was only affected by 0.32%. Finally, for

the number of tips, the DL had 5.25% reduction in the num-

ber of tips in the sandy loam soil than in the clay loam soil;

meanwhile, the BL showed a 1.86% reduction under sandy

loam soil. Taken together, these results indicate greater phe-
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BL, TP1
BL, TP2
BL, TP3

DL, TP1
DL, TP2
DL, TP3

(a)

Predictors

(c) (d) (e)

(b)

Genotype category
DiversityDiversity

BreederBreeder

F I G U R E 2 Differentiation of genotype groups by root traits and shoot biomass: (a) Results of principal components analysis of genotype

means (averaged across environments and replicates) colored by their sampling timepoints (TP1, TP2, and TP3) and genotype group (BL, breeding

line; DL, diversity line). (b) Heatmap showing coefficients of 13 root traits along with shoot biomass resulting from linear discriminant analysis to

distinguish genotype groups. Three-dimensional (3D) scatter plot comparing diversity lines and BL of (c) maximum taproot diameter, surface area,

shoot biomass, (d) shoot biomass, number of forks, and root volume, and (e) root volume, surface area, and average root diameter.

 14350653, 2025, 6, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/csc2.70190, W

iley O
nline L

ibrary on [04/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 of 14 BOGATI ET AL.Crop Science

2.0

2.2

2.4

2.6

Clay Loam Sandy Loam

M
a
x
im

u
m

 T
a

p
 R

o
o
t 
D

ia
m

e
te

r

4.4

4.6

4.8

5.0

M
a

x
im

u
m

 L
a

te
ra

l 
B

ra
n

c
h

 L
e

n
g

th

5.8

5.9

6.0

6.1

T
ip

s Accession
Breeder
Diversity

Clay Loam Sandy Loam Clay Loam Sandy Loam

(a)                                            (b)                                        (c)

F I G U R E 3 Interaction plot of root traits across soil types for genotype groups. The transformed mean trait values are shown for two soil

environments (clay loam and sandy loam) in breeder (red dashed line) and diversity (blue dashed line) lines. (a) Maximum lateral branch length, (b)

Maximum tap root diameter, (c) Number of root tips. Mixed model results are shown in Table 2.

notypic plasticity in root architecture among diverse lines of

soybean compared to elite breeding material. In contrast to the

significant increases for size traits (i.e., length, volume, and

mass) under sandy loam soil, the number of tips, which is a

count trait, was observed to decrease in both genotype groups,

with a stronger response for DL than BL (p < 0.05). As

mentioned previously, in heavier textured soils with greater

proportions of fine particles, there is greater resistance to

root penetration, possibly causing more lateral branching.

This notion is supported by previous findings that sandier

soils with larger particles enable greater aeration and lower

mechanical impedance (Comas et al., 2013).

Beyond high-level genotype group classifications, we

tested for genotype by environment interactions on root traits

and shoot biomass (Table 2). Separate models were fit for

each timepoint and included genotype and environment main

effects and their interaction (Figure 4; Table S2). In contrast,

many traits were significant for genotype main effect only,

and even greater numbers of traits showed significant G × E

effects. Interestingly, there was a distinct inverse relationship

between the numbers of traits that had significant G × E and

the numbers of traits that had significant genotype main effect

only; G × E became more prevalent toward later stages of

development while G main effects decreased (Figure 4). Traits

where G × E effects were significant across all three time-

points were maximum taproot diameter, nodule number, root

biomass, and root spread.

Finally, we next investigated whether belowground phe-

notypic plasticity corresponded to plasticity aboveground.

Phenotypic plasticity was represented by the relative change

in trait values between the two soil environments (see Sec-

tion 2 for calculation). We found that negative correlations

were prevalent between belowground traits and shoot biomass

T A B L E 2 Summary of linear mixed effects model results.

Trait GG E GG × E
Average root angle ns ns ns

Average root diameter ns ** ns

Forks ns ns ns

Maximum lateral branch length ns ns **

Maximum tap root diameter ns ns **

Nodules ns ns ns

Root biomass ns ** ns

Root spread ns *** ns

Root volume ns ** ns

Shoot biomass ns ns ns

Surface area ns ns ns

Tap root length ns ** ns

Tips ns ns *

Total root length ns ns ns

Note: Significance of genotype group, environment, and their interaction resulting

from linear mixed effects models (Equation 1) fit for each of the 14 root traits along

with shoot biomass.

***p < 0.001; **p < 0.01; *p < 0.05. ns, not significant.

with respect to plasticity, except for timepoint two where

positive correlations emerged (Figure S7). Most notably, rel-

ative changes to maximum taproot diameter and maximum

lateral branch length were positively correlated with relative

change to shoot biomass during this transition to reproductive

growth. Overall results from timepoints one and three suggest

a trade-off in aboveground and belowground trait plasticity

in response to soil environment. Divergence of timepoint two

results from the earlier and later developmental stages could

be due to this sampling occurring around the transition period
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F I G U R E 4 Effects of genotype, environment, and genotype x

environment interaction on root traits across timepoints. Results of

models shown in Table S2 are summarized here for the total number of

traits that had (a) significant G × E interaction effects; (b) only

significant genotype main effects; (c) only significant environment

main effects; and (d) significant Genotype and Environment main

effects but no significant G × E. Models were fit separately for each

timepoint. ***p < 0.001; **p < 0.01; *p < 0.05; .p < 0.1.

from vegetative to reproductive growth, which involves major

changes to plant physiology.

3.5 Maximum taproot diameter and
maximum lateral branch length have the
highest heritability among measured root traits

We next evaluated broad- and narrow-sense heritabilities of

root traits across the two environments and three growth

stages. Across timepoints, heritabilities were highest in TP1.

However, consistent with previous studies, our root measures

showed generally low heritabilities (Figure S8). Since differ-

ences in mean heritabilities between environments were not

significant, we averaged heritabilities across environments for

further analysis. Heritabilities across timepoints were high-

est in TP1. Overall mean values were highest for maximum

taproot diameter (H2 = 0.37 and h2 = 0.21) and maximum

lateral branch length (H2 = 0.22 and h2 = 0.13) among root

traits. These values were lower than heritabilities computed

for shoot biomass (H2 = 0.57 and h2 = 0.24), which served

as a benchmark as the sole aboveground trait. Heritabilities

for maximum taproot diameter and maximum lateral branch

length were comparable (or slightly higher) than those for

shoot biomass during TP1 but decreased linearly over the sub-

sequent timepoints. In contrast, shoot biomass remained more

consistent (Figure 5). The observed reductions in heritability

over time were unique to these two RSA traits: other root traits

showed overall lower but more consistent heritability values

across timepoints (shaded polygon in Figure 5). Interestingly,

both these traits were extracted by first making four to five

0.0

0.2

0.4

TP1 TP2 TP3
Timepoint

M
ea

n 
N

ar
ro

w
 S

en
se

 H
er

ita
bi

lit
y

Maximum lateral branch length
Maximum tap root diameter
Shoot biomass

0.0

0.2

0.4

0.6

0.8

M
ea

n 
B

ro
ad

 S
en

se
 H

er
ita

bi
lit

y

TP1 TP2 TP3
Timepoint

Range of all other root traits

(a)  (b)

F I G U R E 5 Trait heritability across timepoints. (a) Mean

broad-sense heritability (H2) and (b) mean narrow-sense heritability

(h2) for selected traits across three timepoints (TP1–TP3). Colored lines

represent three representative traits: maximum lateral branch length

(olive), maximum taproot diameter (green), and shoot biomass (blue).

The shaded gray area indicates the range of heritability values for all

other root traits.

random measurements manually per 2D image, representing

only a small sample of what is found within a single root

system. The dramatic decrease in heritabilities across devel-

opment could potentially be explained by increased error in

our 2D measurement approach as root systems grew larger

from TP1 to TP2 and TP3.

3.6 Characterizing root trait distributions
using a portable, low-cost 3D method

Methods that can better describe trait distributions in root sys-

tems may reduce measurement error, particularly for traits

requiring multiple measurements within a single root system,

such as maximum tap root diameter and maximum lateral

branch length. We tested the application of 3D root model-

ing to extract features using a new open-source framework

described by Carpenter et al. (deposited on bioRxiv; DOI

pending). A total of 39 traits were extracted on a subset of 30

root systems as a proof-of-concept (Section 2). Of these traits,

12 were also measured using the 2D approach. In compar-

ing trait values estimated from 2D versus 3D methodologies,

five out of the 12 root traits were correlated (r = 0.6–0.8)

between the two methods (Figure S9). For traits such as lat-

eral branch length or branching angle, which has a distribution

for each root system, 3D models enabled detection of values

across a much larger range. For example, comparisons of 2D

and 3D distributions for lateral branch length demonstrated

that 3D feature extraction enabled sampling of the shortest

branches, whereas the 2D method relied on human selection

of “random” branches, potentially biasing selections toward

longer branches (Figures S10–S15). This seems especially

likely since much of the distribution of lateral branch lengths

lies in the lower value range. Moreover, a study comparing

2D and 3D methodologies found that 3D methods were better

 14350653, 2025, 6, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/csc2.70190, W

iley O
nline L

ibrary on [04/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 of 14 BOGATI ET AL.Crop Science

for estimating lateral branch lengths in the tree species Pinus
pinaster (Danjon et al., 1999). Nevertheless, simpler traits

(e.g., root length and diameter) are still adequately extracted

using 2D methods (Clark et al., 2013). Perhaps the greatest

advantage of root trait estimation using 3D models is that this

approach can enable extraction of novel RSA descriptors (e.g.,

minimum, maximum, or coefficient of variation for root trait

distributions) for use in downstream analyses such as genetic

mapping.

4 CONCLUSION

While breeding programs have been historically success-

ful in developing new soybean cultivars, there is an

increasingly narrow genetic base within breeder panels

(Moose & Mumm, 2008). Diversity panels of landraces or

wild accessions represent a source of novel alleles offering

higher levels of genetic and adaptive potential to changing

environments (Meyer et al., 2012; X. Wei & Jiang, 2021),

particularly in the case of future challenging climatic scenar-

ios. Our study finds evidence for divergence of root system

traits in cultivated soybean as an indirect result of modern

breeding. In the context of our study, the root systems of

BL were larger but less plastic in response to changing soil

environments than those of DL. These findings contrast with

previous conclusions that more parsimonious root systems

underlie superior biomass in elite lines (Noh et al., 2022).

Rather, they are more aligned with results from an era study

suggesting that soybean root systems became larger over time

as a result of selection (Mandozai et al., 2021). While her-

itabilities of root traits are generally low, the higher values

for traits like maximum tap root diameter and maximum lat-

eral branch length suggest that using measurement approaches

that more fully characterize within-sample trait distributions

can help decrease measurement error and improve heritabil-

ity estimates. Future advancements in 3D root modeling and

feature extraction could help to better quantify RSA toward

more translational opportunities for root architecture traits in

varietal crop improvement.
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