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Abstract: The structure from motion (SfM) and multiview stereo (MVS) techniques have 

proven effective in generating high-quality 3D point clouds, particularly when integrated 

with unmanned aerial vehicles (UAVs). However, the impact of image quality—a critical 

factor for SfM–MVS techniques—has received limited a�ention. This study proposes a 

method for optimizing camera se�ings and UAV flight methods to minimize point cloud 

errors under illumination and time constraints. The effectiveness of the optimized se�ings 

was validated by comparing point clouds generated under these conditions with those 

obtained using arbitrary se�ings. The evaluation involved measuring point-to-point error 

levels for an indoor target and analyzing the standard deviation of cloud-to-mesh (C2M) 

and multiscale model-to-model cloud comparison (M3C2) distances across six joint planes 

of a rock mass outcrop in Seoul, Republic of Korea. The results showed that optimal set-

tings improved accuracy without requiring additional lighting or extended survey time. 

Furthermore, we assessed the performance of SfM–MVS under optimized se�ings in an 

underground tunnel in Yeoju-si, Republic of Korea, comparing the resulting 3D models 

with those generated using Light Detection and Ranging (LiDAR). Despite challenging 

lighting conditions and time constraints, the results suggest that SfM–MVS with opti-

mized se�ings has the potential to produce 3D models with higher accuracy and resolu-

tion at a lower cost than LiDAR in such environments. 

Keywords: structure-from-motion; multiview stereo; camera; UAV; LiDAR; illumination; 

time; optimization; rock 

 

1. Introduction 

Structure from motion (SfM) and multiview stereo (MVS) photogrammetry have 

been widely recognized for their effectiveness in generating high-resolution and accurate 

3D point clouds or 2.5D digital elevation models (DEMs) at a relatively low cost [1,2]. 

These techniques can be further enhanced by integration with mobile camera platforms, 

such as unmanned aerial vehicles (UAVs), enabling rapid data acquisition even in remote 

or previously inaccessible areas [1–9]. The applications of SfM–MVS are diverse, 
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including surface roughness estimation [1,6–8], topographic change detection [6,10,11], 

vegetation monitoring [3,4], and rock mass characterization [12–14]. However, despite its 

versatility, the SfM–MVS technique involves inherent complexities, making it challenging 

to ensure the quality of the generated 3D models [1]. 

Enhancing the quality of 3D models fundamentally depends on acquiring high-qual-

ity images, as they serve as the primary input for SfM–MVS processing. Ensuring proper 

image exposure is critical, as overexposed or underexposed images can hinder effective 

feature extraction and matching in the SfM–MVS workflow [4,15]. Achieving optimal im-

age brightness requires a careful balance between blur and noise, which can be controlled 

through appropriate camera se�ings. An ideal solution is reducing ISO values and expo-

sure time while increasing the F-number [16], but this is often impractical under actual 

survey conditions, where camera se�ings must be determined based on environmental 

factors. One common approach is to use the camera’s auto mode, which allows the inter-

nal algorithm to automatically calculate scene exposure and adjust camera se�ings for 

optimal image quality. While this method is convenient, the resulting images do not al-

ways guarantee high-quality 3D reconstructions. Alternatively, a manual configuration 

that maintains an F-number of 3.5, an ISO value of 200, and a shu�er speed faster than 

1/60 s to ensure adequate brightness has been shown to produce high-quality 3D recon-

struction results [17]. This strategy is particularly effective under favorable lighting con-

ditions, such as bright daylight. However, these se�ings may not be feasible in low-light 

environments. 

While appropriate camera se�ings are essential for image quality, additional chal-

lenges arise when the camera is mounted on a UAV. In particular, mounting a camera on 

a UAV introduces several challenges, including image quality degradation due to blurring 

and vibrations [18,19]. While gimbaled cameras can help mitigate vibration-related issues 

[1], additional measures, such as restricting shu�er speed, are required to minimize mo-

tion blur. Camera se�ings that maintain motion blur below 1.5 px and diffraction within 

the pixel pitch are recommended [20]; however, adhering to these standards can be par-

ticularly challenging under low-light conditions [21], such as nigh�ime photography [22] 

or underground environments [23,24]. When still photogrammetry is employed, high dy-

namic range (HDR) images can significantly improve the quality of 3D reconstructions 

[25]. However, during mobile or UAV-based photogrammetry, HDR images cannot be 

captured properly due to the UAV’s motion. 

While UAV flight methods are closely related to the selection of camera se�ings, pre-

vious studies have largely overlooked the importance of their relationship. UAV flight 

methods are often derived based on the UAV’s mission planning tools. However, these 

derived flight methods may be infeasible according to the field or survey conditions. For 

instance, in underground tunnel construction, only 3–10 min are typically allocated for 

rock face surveys. Surveys generally require a specific target resolution or ground sam-

pling distance (GSD), which subsequently limits the permissible height or distance from 

the target [26]. For urban mapping and forestry applications, altitudes between 100 and 

120 m provide a good balance between resolution and coverage [27,28]. Nevertheless, 

such limitations restrict the range of feasible UAV flight paths, which in turn affects image 

quality. 

Moreover, existing studies on UAV-based 3D reconstruction have largely focused on 

isolated parameter optimizations, such as auto-exposure se�ings or UAV mission plan-

ning tools. Optimizing camera se�ings for a given illumination condition and optimizing 

flight methods for specific flight constraints (e.g., time) may each be optimal within their 

respective domains. However, these fragmented approaches often result in sub-optimal 

configurations, as they fail to account for the interactions between camera se�ings and 
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UAV flight methods. Therefore, it is crucial to perform a simultaneous optimization of 

both camera se�ings and flight methods to achieve a globally optimal configuration. 

According to a survey conducted by the Korea Institute of Construction Technology 

[29] on satisfaction with 3D modeling using SfM–MVS and Light Detection and Ranging 

(LiDAR), a major drawback identified was the lack of clear guidelines for workers on how 

to effectively capture images for SfM–MVS. Additionally, concerns were raised regarding 

the reliability of the point cloud quality generated by SfM–MVS, particularly in tunnel 

construction sites where inadequate lighting can significantly impact results. Conse-

quently, despite the higher capital costs, potential for shadow zones, lack of texture, and 

longer acquisition times associated with LiDAR, workers tended to favor this technique 

due to its perceived reliability under challenging conditions. 

In this study, we developed a method to optimize photography se�ings, encompass-

ing both camera se�ings and UAV flight methods simultaneously, to achieve the best im-

age quality that minimizes errors in 3D point clouds under given lighting and time con-

straints. Utilizing the error prediction model based on image error propagation outlined 

in our previous research [30], Section 2 explains the methodology for determining optimal 

photography se�ings and their applications. Section 3 presents a comparative analysis of 

point cloud errors generated using the optimized se�ings versus arbitrary se�ings in con-

trolled laboratory environments and under field conditions, specifically at an outcrop rock 

mass on Mt. Gwanak, Seoul, Republic of Korea. Additionally, we evaluated the perfor-

mance of SfM–MVS using the optimal photography se�ings and compared it with LiDAR 

data from an underground tunnel face in Yeoju-si, Republic of Korea. Section 4 discusses 

the results, demonstrating the effectiveness of the proposed photography se�ings and 

highlighting their potential benefits for improving SfM–MVS applications. Section 5 con-

cludes by discussing the practicality of determining and implementing these optimal pho-

tography se�ings, emphasizing their significance in enhancing the accuracy and reliability 

of SfM–MVS-derived 3D models across various operational environments. 

2. Materials and Methods 

2.1. Theoretical Background of Error Prediction 

Three methodologies for assessing errors in SfM–MVS have been documented: point-

to-point (PP), point-to-raster (PR), and raster-to-raster (RR) [6]. PP-type errors involve a 

direct comparison between two point clouds, while PR-type errors are assessed by com-

paring a digital elevation model (DEM) with reference points obtained from a total station 

(TS) or a differential global positioning system (dGPS). In contrast, RR-type errors meas-

ure discrepancies between two DEMs. Common metrics for quantifying these errors in-

clude root mean squared error (RMSE), mean error (ME), and mean absolute error (MAE) 

[1]. In this study, the error metric was based on PP-type RMSE, as it circumvents issues 

related to sampling errors in raster data [10] and uncertainties in reference points obtained 

using TS and dGPS [1,6,7], while also facilitating statistical manageability. Furthermore, 

we defined “optimal photography se�ings (OPS)” as the camera se�ings that minimize 

PP-type RMSE in the 3D point cloud generated under given imaging conditions. 

The term “photography se�ings” encompasses both camera se�ings, including shut-

ter speed (t), F-number (N), ISO (S), and pixel resolution (p), and factors related to the 

motion of the camera platform, such as the distance from the target (D) and the speed of 

the platform or UAV (v). For this study, the acronym “UAV” was used to denote all types 

of mobile camera platforms, with v representing the UAV’s flight speed. 

Our previous study argued that the selection of photography se�ings can have a sig-

nificant impact on the error levels in both the captured images and the resulting 3D point 

clouds, with these relationships exhibiting complex interactions [30]. The relationship 
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between image errors (ε2D) and errors in SfM–MVS-generated point clouds (ε3D) is de-

scribed as 

��� = ���� ≅
�

�
���, (1)

where the scaling factor, s, is approximately equivalent to the ratio of D divided by the 

focal length (f). Equation (1) implies that image errors are propagated and magnified in 

the resulting point cloud. To further quantify image errors (Equation (A1)), three primary 

sources of distortion were considered: motion blur (Equations (A2) and (A3)) out-of-focus 

blur (Equations (A4) and (A5)), and image noise (Equations (A6) and (A7)). These distor-

tions were modeled based on the camera se�ings and UAV flight parameters, with de-

tailed mathematical derivations and probabilistic representations provided in Appendix 

A. 

To mitigate systematic errors resulting from inappropriate image brightness, we as-

sumed that the captured images were adequately saturated by employing camera se�ings 

that satisfy Equation (2) under given illumination conditions [31]. 

���

��
= 250 lx ⋅ s  (2)

where E stands for the level of illumination. 

For UAV image capture, it was assumed that images were taken while the UAV trav-

eled at a constant v, at a constant D, employing a parallel-axis image acquisition scheme 

to ensure consistent viewing angles from various shooting positions [7]. Additional as-

sumptions made included the predominance of photon shot noise as the main source of 

image noise [20] and a reduction in pixel resolution through pixel binning to mitigate im-

age noise [32]. 

This analysis did not account for systematic errors arising from invalid bundle ad-

justment (BA), lens distortion, inappropriate use of ground control points (GCPs), insuf-

ficient image overlap, uncalibrated camera se�ings, and texture deficiency. In general, BA 

is deemed reliable due to the robustness of feature detection algorithms [33,34] and outlier 

removal techniques [35–37]. 

Lens distortion is considered to be effectively eliminated and has a minimal impact 

on the accuracy of point cloud errors, as modern SfM software is capable of precise cali-

bration [11,38]. While incorporating additional GCPs can help reduce errors, the marginal 

benefits tend to plateau when using four or more GCPs [8,39–41]. Similarly, increasing the 

number of images can improve accuracy to a certain extent [42–44]; however, beyond a 

certain threshold, an excessively high image count may lead to computational inefficien-

cies [7,38]. A practical alternative is extracting a sufficient number of frames from a video 

taken with a mobile camera, instead of relying solely on individual photos [45]. While 

video-based approaches benefit from higher frame counts and greater image overlap, cap-

turing high-resolution still images is generally a more effective strategy for maximizing 

point cloud accuracy, as still images typically offer significantly higher resolution than 

video frames. This approach is most effective when the required image overlap can be 

maintained; otherwise, video extraction may still be a viable alternative. However, a dis-

cussion on the ideal overlap for these images is beyond the scope of this study. 

Camera calibrations can be refined during the BA process, but inaccuracies in cali-

bration may lead to systematic errors affecting the final 3D model [11]. It is advised to 

ensure camera calibration is accurately fixed [9,11,16], particularly in cases of weak cam-

era geometry, such as when employing a parallel-axis image acquisition scheme [38]. 

Adequate texture is crucial for successful feature extraction and dense matching; im-

ages with insufficient texture may compromise these processes [3,46]. This issue can be 
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addressed by ensuring images have sufficient texture at a given scale [5] or by applying 

artificial texture to the target surface [16,47]. 

Errors in SfM–MVS can be pre-determined by identifying key parameters, including 

illumination, camera specifications, camera se�ings, and UAV flight methods at the time 

of image capture [30]. However, the challenge lies in selecting the optimal combination of 

these parameters from a vast range of possible configurations. To address this, Section 2.2 

outlines two primary constraints—illumination and time—that narrow down the selec-

tion of potential parameter combinations. Subsequently, Section 2.3 presents a methodol-

ogy for determining the OPS within these constraints. 

2.2. Constraints: Illumination and Time 

In this study, we present example figures and applications using Bentley’s Con-

textCapture software v10.17.0.39 (h�ps://bentley.com/software/itwin-capture-modeler/, 

accessed on 2 March 2025) for the SfM–MVS processing, along with a DJI Mavic 2 Pro 

drone camera (DJI Technology Co., Ltd., Shenzhen, China; refer to Table 1) for image ac-

quisition. For these specific tools, we used the M value of 13 px (Equation (A3)), and the 

Q value of 2.62 × 10−5 lx0.5s0.5m/px (Equation (A7)) [30]. 

Table 1. Specifications of DJI Mavic 2 Pro (h�ps://www.dji.com/mavic-2, accessed on 2 March 

2025). 

Sensor 
1″ CMOS 

Effective pixels: 20M 

Lens 

Field of view (FOV): approximately 77° 

Focal length: 28 mm (35 mm equivalent) 

Aperture: f/2.8–f/11 

Shooting range: 1 m–∞ 

ISO range 
100–12,800 (for still images) 

100–6400 (for videos) 

Shu�er speed 8–1/8000 s 

Still image resolution 5.4 K: 5472 × 3648 @ 24/25/30 fps 

Video resolution 

4 K: 3840 × 2160 @ 24/25/30 fps 

2.7 K: 2688 × 1512 @ 24/25/30/48/50/60 fps 

FHD: 1920 × 1080 @ 24/25/30/48/50/60/120 fps 

2.2.1. Illumination 

Equations (1) and (A1)–(A7) define nine parameters for calculating SfM–MVS errors: 

camera se�ings (N, S, t, p), UAV flight methods (D, v), camera specifications (sensor size 

d, f), and illumination (E). While camera se�ings and UAV flight methods can be adjusted 

as needed, camera specifications and illumination are often treated as uncontrollable pa-

rameters. Modifying camera specifications is generally avoided [9,11,16]; they are effec-

tively treated as fixed parameters. Therefore, illumination remains the only uncontrollable 

parameter that can vary, thereby acting as a principal constraint that restricts the selection 

of camera se�ings and UAV flight methods. 

Figure 1 illustrates the optimization of camera se�ings under an illumination con-

straint of E = 100 lx when flying the UAV under D = 3 m and v = 0.8 m/s conditions. While 

every camera se�ings combination satisfies the appropriate image brightness (Equation 

(2)), error levels significantly fluctuate with different camera se�ings. Among these com-

binations, the optimal camera se�ings, yielding a minimum error of 2.05 mm under the 

given conditions, are N = 2.8, t = 1/160 s, S = 3200, and p = 1920 px. If the illumination 

conditions or UAV flight methods change, the optimal camera se�ings and the corre-

sponding lowest achievable error can be determined using the procedure outlined in this 
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study. As mentioned earlier, the illumination conditions are typically uncontrollable, 

meaning that UAV flight methods must be determined under an additional constraint, 

time, which is introduced in the next section. 

 

Figure 1. Optimization of the camera se�ings under specific E–D–v conditions.  

2.2.2. Time 

Survey sites often have strict time constraints for image acquisition, which may be 

influenced by factors such as limited survey periods, UAV ba�ery capacity, and changes 

in outdoor illumination over time. To ensure that the entire survey is completed within 

the allocated timeframe, the UAV flight method—including flying speed and distance 

from the target—must be selected while considering photography time limitations. 

The faster the UAV speed (Figure 2a) and the greater the distance from the target 

(Figure 2b), the larger the area covered per unit of time. When the UAV navigates in a zig-

zag pa�ern parallel to the target [27], increasing the speed reduces the time required for 

horizontal traversal. Similarly, as the distance from the object increases, the captured 

scene encompasses a larger area, thereby reducing the need for multiple horizontal passes 

to complete the survey. The field of view (FOV) affects the area captured at a given dis-

tance; however, in the absence of a zoom lens, the camera’s FOV remains fixed. Disregard-

ing the acceleration and deceleration phases near trajectory boundaries and the time 

needed for vertical traversal, and presuming that the target area is considerably large, the 

area photographed per unit of time (A) is directly proportional to both v and D from the 

target, as expressed in Equation (3). The precise proportionality constant depends on the 

camera’s FOV, which is approximately 0.78 for the DJI Mavic 2 Pro camera. 

� ∝ �� (3)

In Figure 1, the optimal camera se�ings were identified for UAV flight methods of D 

= 3 m and v = 0.8 m/s, resulting in a minimum error of 2.1 mm. However, exploring alter-

native UAV flight methods under different D–v conditions, while maintaining the same 

area covered per unit of time, could potentially yield lower errors. This highlights the 

importance of examining various UAV flight methods under identical time constraints. 



Remote Sens. 2025, 17, 1877 7 of 32 
 

 

 

Figure 2. Impact of UAV flight methods on the area photographed per unit of time: (a) UAV speed; 

(b) distance from the object. 

Figure 3 illustrates the optimization of UAV flight methods. In Figure 3a, the color 

assigned to each point on the D–v chart illustrates the minimum error achievable for each 

D–v condition at a given illuminance level (see Figure 1). For instance, a cyan color repre-

sents the minimum achievable error of 1.47 mm at D = 3 m, v = 0.3 m/s, and E = 100 lx. The 

optimal UAV flight method is determined by identifying the points with minimum RMSE 

values, which are marked as red dots in Figure 3b–e. These points are selected across all 

D–v conditions that correspond to equivalent A values, as indicated by the dashed lines 

in the figures. 

The relationship between the optimal (D, v) and A is complex, as it is affected by 

variations in camera se�ings at each (D, v) point. In Figure 3b, the most favorable D–v 

condition for A = 0.5 m2/s, D = 2 m, and v = 0.3 m/s leads to a minimum error of 1.25 mm 

with camera se�ings of t = 1/100 s, N = 3.5, S = 3200, and p = 1920 px. In contrast, for A = 

1.5 m2/s with D = 3 m and v = 0.7 m/s, the minimum error is 1.97 mm using camera se�ings 

of t = 1/160 s, N = 2.8, S = 3200, and p = 1920 px. Furthermore, the optimal (D, v) also varies 

depending on illuminance levels. For example, at E = 100 lx, the optimal UAV flight 

method for A = 0.5 m2/s is D = 2 m and v = 0.3 m/s (as shown in Figure 3b), whereas at E = 

250 lx, it shifts to D = 3 m and v = 0.2 m/s for the same A (as shown in Figure 3d). 
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Figure 3. Optimization of UAV flight methods under E–A constraints. (a) The procedure for gener-

ating a full D–v chart. (b) Optimization for E = 100 lx; each dashed line indicates points with identical 

A, with the red dot on each line indicating the point of minimum error for that specific A constraint. 

(c) Optimization for E = 25 lx. (d) Optimization for E = 250 lx. (e) Optimization for E = 500 lx. 

2.3. Step-by-Step Process of the OPS Determination 

OPS is defined as the combination of the optimal camera se�ings and the optimal 

UAV flight methods that minimize error under given illumination and time constraints. 

The process of determining the OPS consists of four main steps (Figure 4): (1) Measure the 

illumination level (E) using a lux meter. In the absence of a lux meter, auto-exposure set-

tings can serve as an alternative method to estimate relative brightness levels, although 

they may lack the absolute accuracy of dedicated illuminance sensors. (2) Calculate the 

required area to be photographed per unit of time (A); (3) determine the optimal UAV 

flight methods (D, v); (4) determine the optimal camera se�ings (N, t, S, p). While Steps 1 

and 2 can be performed in any order, Step 3 requires the completion of both Steps 1 and 

2, and Step 4 needs Steps 1, 2, and 3 to be completed beforehand. For a measured illumi-

nance of 100 lx, with the requirement to photograph the entire target area of 100 m2 within 

4 min, the OPS were identified as follows: flying a drone at D = 2 m with v = 0.3 m/s, 

combined with camera se�ings of N = 3.5, t = 1/100 s, S = 3200, and p = 1920 px. 

A point of potential confusion is that the D–v chart, utilized in Step 3, is derived from 

analyzing the minimum camera se�ing values under various E–D–v conditions, as de-

tailed in Step 4. Nevertheless, determining the optimal UAV flight methods must precede 

the selection of optimal camera se�ings, as the la�er is influenced by the former. It is im-

portant to note that the optimal UAV flight methods identified in Step 3 are only effective 

when combined with the optimal camera se�ings identified in Step 4. This dependency 
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highlights the intricate relationship between UAV flight methods and camera se�ings in 

minimizing error. 

 

Figure 4. Flow chart for deriving the OPS for UAV-based SfM–MVS. 

3. Application of the OPS 

This section presents examples of OPS applications and evaluates their effectiveness. 

Point clouds generated employing the OPS were compared with those obtained employ-

ing arbitrary photography se�ings (APS). The APS were not chosen freely but were se-

lected from camera se�ings that satisfy Equation (2) to ensure adequate image brightness, 

and from UAV flight methods that were constrained by the same time limitations (Equa-

tion (3)). Furthermore, the performance of SfM–MVS utilizing the OPS was compared to 

LiDAR data acquired from an underground tunnel construction site. This comparison 

aimed to demonstrate the potential of the OPS in enhancing the performance of SfM–MVS 

under challenging environmental conditions. 

3.1. Comparison Between the OPS and APS Under Laboratory Conditions 

An experimental setup was designed in a laboratory to evaluate the error differences 

between the OPS and APS. A textured reference target was established on a vertical flat 

wall consisting of three planes, each with 60 cm edge lengths and inclined approximately 

27 degrees from the wall (Figure 5). Three LED lamps were placed to ensure uniform 
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diffuse illumination across the target, and their intensity was adjustable to control illumi-

nance levels. 

To minimize systematic errors, six QR codes were utilized as GCPs [8,39]. These QR 

codes were generated using the “ContextCapture Target Creator” feature within Bentley’s 

ContextCapture software (v10.17.0.39). This feature allows the creation of QR codes em-

bedded with predefined 3D coordinates (x, y, z) in a local coordinate system, specified in 

meter units. In this study, the QR codes were arranged in a hexagonal layout (Figure 5), 

and their physical placement was performed using a ruler, ensuring an accuracy within 1 

mm. When the images containing these QR codes were processed in ContextCapture, the 

software automatically recognized the center of each QR code as the predefined coordi-

nates. The detected coordinates exhibited an RMS 3D error of 4.9 mm (ranging from 4.5 

to 5.2 mm). This error was primarily a�ributed to limitations in ruler precision during 

placement and variations in GSD caused by differences in image resolution and camera 

distance. 

 

Figure 5. Flow chart for deriving the OPS for UAV-based SfM–MVS. Experimental setup and axis 

se�ings. The normal vector for the left plane is represented as nl = (0.423, 0.876, −0.217), for the right 

plane as nr = (0.438, 0.869, −0.229), and for the bo�om plane as nb = (−0.001,0.857,0.516). ω, ϕ, and κ 

represent the rotation angles around the x-, y-, and z-axes, respectively, between the 2D camera 

coordinate system and the 3D object coordinate system. 

The imagery was captured using a DJI Mavic 2 Pro drone camera, with the onboard 

gimbal helping to dampen vibrations. A parallel-axis image acquisition scheme was em-

ployed, ensuring the camera’s viewing angle remained consistently orthogonal to the tar-

get [7]. Instead of taking individual photographs, a video was recorded at 24 fps in a single 

take, and frames were later extracted from the video. During the video capture, the UAV 

maintained a constant horizontal flight speed, ensuring that the extracted frames were 

sequential with uniform baseline distances. To prevent systematic errors due to 
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insufficient image overlap, 20 frames were selected [7,38], with the total distance from the 

center of the first frame to the center of the last frame measuring 1.8 m. 

The experiment involved capturing the target using the OPS and two APS under spe-

cific constraints of illuminance (E = 100 lx) and a combined factor of distance and velocity 

(D × v = 1.8 m2/s), which, considering the FOV of the camera, corresponded to A ≅ 1.4 m2/s. 

Following the proposed methodology (Figure 4), the OPS were determined, and as previ-

ously mentioned, the APS were selected based on camera se�ings and UAV flight meth-

ods that satisfied these constraints. Details of these photography se�ings are provided in 

Table 2. 

For point cloud generation, Bentley’s ContextCapture software was utilized, and the 

camera calibration was fixed to specified values during the SfM–MVS procedure [16]. To 

avoid potential smoothing effects that could occur during 3D mesh production [45], the 

final outputs were produced in 3D point cloud format (LAS format) rather than 3D mesh 

models. The generated 3D point clouds were then registered to a predefined object coor-

dinate system using the open-source 3D point-cloud processing software CloudCompare 

v2.12 alpha, ensuring that the data from different se�ings could be accurately compared 

and analyzed. 

Table 2. The photography se�ings utilized for the laboratory experiment. Each se�ing was repeated 

5 times, resulting in a total of 15 shots. 

Se�ings 

Index 

N 

 

t 

(s) 

S 

 

p 

(px) 

D 

(m) 

v  

(m/s) 

OPS 2.8 1/160 3200 1920 3 0.6 

APS#1 2.8 1/320 6400 1920 6 0.3 

APS#2 2.8 1/320 6400 1920 9 0.2 

Due to the challenges in accurately identifying the reference point locations of dis-

torted points [1], direct measurement of point-to-point errors is difficult. Instead, we 

measured the distances from the point cloud to the planes of the reference target (denoted 

as εplane), which are straightforward to measure, and converted these values to PP-type 

RMSE (εpoint). The conversion from εplane to εpoint is based on Equation (4) and can be applied 

when the reference target has a planar shape [30]. 

������ = ������ × �
∑ ( ������ + ������)�

�

∑ {���(�� ∙ ���) + ���(�� ∙ ���)}�
�

, (4)

where dxk and dyk represent errors on the image plane, while r1 and r2 are the column 

vectors of the rotation matrix that converts 2D image coordinates to 3D object coordinates. 

Additionally, n denotes the normal vector of the reference target plane (Figure 5). The 

comparison results of εpoint for the OPS and two APS are presented in Section 4.1.1. 

3.2. Comparison Between the OPS and APS Under Field Conditions 

The effectiveness of the OPS was validated through a field experiment conducted at 

Mt. Gwanak, Seoul, Republic of Korea. The site features a well-exposed rock mass outcrop 

(Figure 6) composed of Jurassic-age granite bedrock. The joint planes, primarily oriented 

in the southeast and northeast directions, consist of smooth, planar surfaces characteristic 

of tensile fracturing. Additionally, previous studies utilizing LiDAR surveys at the same 

site have been reported [48]. 

The site features a rock mass outcrop approximately 3 × 2.5 m in size. We designated 

six joint planes as targets, each measuring 15 × 15 cm, with their indices displayed in 

Figure 6. Instead of creating a separate 3D model for each joint plane, we surveyed the 
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entire site and then extracted the six joint planes from the complete 3D model. The refer-

ence 3D model was captured using a high-precision handheld laser scanner, the 

SCANTECH KSCAN Magic (SCANTECH (HANGZHOU) CO., LTD., Hangzhou, China; 

Table 3), which offers an accuracy of 0.05 mm and a GSD of 0.05 mm. To ensure high 

accuracy, calibration markers were a�ached to the target surface, which partially ob-

structed some sections of the rock face. The entire site was first scanned with a GSD of 1 

mm. Subsequently, only the region of interest—the six joint planes and their vicinities—

was rescanned at a finer GSD of 0.1 mm to minimize the scanning time. However, despite 

the scanning area covering only 7.5 m2, the scanning process required seven hours, mak-

ing it impractical for routine on-site surveys. 

 

Figure 6. (a) An image of the outcrop rock mass located at Mt. Gwanak, Seoul, Republic of Korea. 

(b) Reference model scanned with the SCANTECH KSCAN Magic laser scanner with a GSD of 1 

mm. (c) Reference models of each joint plane, rescanned with a finer GSD of 0.1 mm. Joint planes 

are numbered from 1 to 6 for indexing purposes. 

Table 3. SCANTECH KSCAN-Magic laser scanner specification (h�ps://www.3d-

scantech.com/product/kscan-magic-composite-3d-scanner/, accessed on 2 March 2025). 

Accuracy ≥0.01 mm 

Scanning rate ≥1,350,000 measurements/s 

Scanning area ≥1440 × 860 mm 

Resolution ≥0.01 mm 

Stand-off distance 300 mm 

Depth of field 925 mm 

For the SfM–MVS process, we a�ached six April codes uniformly around the target 

region and used them as GCPs to minimize systematic errors [8,39]. The distances be-

tween the April codes were measured and input into ContextCapture software, which 

automatically recognized the codes and provided absolute scale information. The target 

joint planes were captured under two different illuminance constraints (E = 50, 1500 lx) 

and one time constraint (A = 0.3 m2/s). These targets were located in an open-air environ-

ment, where illuminance was indirectly controlled by adjusting the time or weather con-

ditions of the survey. For instance, 50 lx corresponds to low brightness and similar post-

sunset conditions, while 1500 lx represents intermediate brightness, typical of a cloudy 

day. Brighter conditions, such as those on a sunny day, were deliberately avoided, as non-
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diffuse illumination (e.g., shadowed areas) could introduce systematic errors. The time 

constraint (A = 0.3 m2/s) reflects realistic conditions found in tunnel construction site sur-

veys, where rock faces measuring 50–200 m2 must be surveyed within 3–10 min. 

We used a camera mounted on the DJI Mavic 2 Pro drone and employed a parallel-

axis image acquisition scheme. A single video was recorded per shot while the drone 

maintained a constant horizontal flight speed. For 50 lx, we captured four videos, with 

each OPS and one APS repeated twice. For 1500 lx, we recorded eight videos, repeating 

the OPS and three APS twice each. Details of these photography se�ings are provided in 

Table 4. From each video, 50–60 frames were extracted and processed using ContextCap-

ture software to generate 3D point clouds of the rock mass. 

Table 4. The photography se�ings utilized for the outcrop rock mass survey include se�ings #1 and 

#3 as the OPS, and the other se�ings as the APS. Each se�ing was repeated twice, resulting in a total 

of 12 shots. 

Se�ings 

Index 

E 

(lx) 

N 

 

t 

(s) 

S 

 

p 

(px) 

D 

(m) 

v  

(m/s) 
Optimal 

1 50 3.5 1/50 3200 1920 2 0.2 O 

2 50 3.5 1/50 3200 1920 4 0.1 X 

3 1500 5.6 1/200 800 3840 2 0.2 O 

4 1500 5.6 1/40 200 3840 4 0.1 X 

5 1500 4 1/200 400 3840 4 0.1 X 

6 1500 6.3 1/40 200 3840 2 0.2 X 

The error correction method used for the indoor target (detailed in Equation (4)) was 

feasible because the target consisted of flat planes. However, this method could not be 

applied to the non-flat geometry of the target joint planes. Consequently, alternative quan-

titative indicators relevant to error assessment were measured [49]: The cloud-to-mesh 

(C2M) distance and the multiscale model-to-model cloud comparison (M3C2) distance 

[50]. In this study, point clouds generated using SfM–MVS were compared against a ref-

erence 3D model produced by laser scanning. The standard deviation (std) of the C2M 

and M3C2 distances (stdC2M and stdM3C2, respectively) served as the quality indicator 

for the point clouds, with calculations performed using CloudCompare software (Figure 

7). Approximately 30 visually corresponding feature points between the reference model 

and the point clouds were identified initially. The models were then coarsely aligned 

based on these feature points, followed by a more precise alignment using the iterative 

closest point (ICP) algorithm. From the 3D models, we extracted six joint planes, each 

measuring 15 × 15 cm. The “compute cloud/mesh distance” function in the software was 

used to calculate the stdC2M for each joint plane under each photography se�ing (Figure 

7d,e). Similarly, the “M3C2 distance” function in the software was used to calculate the 

stdM3C2 with the default parameter se�ings utilized. The comparison results for the 

stdC2M and stdM3C2 between the OPS and APS are presented in Section 4.1.2. 
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Figure 7. Example of calculating the stdC2M distances. Colors represent the C2M distances to the 

reference model. The same procedure was conducted for calculating the stdM3C2 distances: (a) Ref-

erence model of joint plane #2; (b) point cloud generated using SfM–MVS with se�ings #3; (c) point 

cloud generated using SfM–MVS with se�ings #4; (d) histogram of C2M distances for se�ings #3, 

with a resulting stdC2M of 0.3 mm; (e) histogram of C2M distances for se�ings #4, with a resulting 

stdC2M of 0.9 mm. 

3.3. Comparison with LiDAR Data 

Underground tunnel construction sites feature a low-light environment, and the sur-

veying time is often limited due to ongoing construction activities. Moreover, the Global 

Navigation Satellite System (GNSS) is typically unavailable in tunnels, further complicat-

ing the surveying process. To evaluate the SfM–MVS method under such challenging con-

ditions, we implemented SfM–MVS using the OPS and conducted a comparative analysis 

with LiDAR. This comparison was conducted at an underground tunnel construction site 

in Yeoju-si, Republic of Korea, where a surveying team used a LiDAR instrument to scan 

the tunnel face. As shown in Figure 8, the target rock face area was approximately 70 m2. 

With the help of field lighting (Figure 8a), the illuminance in the area was approximately 

25 lx. 
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Figure 8. Field application of SfM–MVS using the OPS at an underground tunnel construction site 

in Yeoju-si, Republic of Korea: (a) Entrance of the tunnel and field lighting inside; (b) the Leica BLK 

360 LiDAR used by the site surveying team; (c) derivation of the OPS for the site; (d) the target rock 

face and DJI Mavic 2 Pro used in the survey. A frame with GCPs was placed in front of the tunnel 

face. 

The surveying team utilized a Leica BLK360 imaging laser scanner (Leica Geosystems 

AG, Heerbrugg, Swi�erland; Figure 8b), with its specifications detailed in Table 5. It is 

important to distinguish between the ranging accuracy, which refers to errors in the di-

rection of the laser beam, and 3D point accuracy. The error term in this study corresponds 

specifically to the 3D point accuracy listed in Table 5. The LiDAR instrument was posi-

tioned 10 m away from the tunnel face, and the scanning process took approximately 5 

min, which is a typical duration for surveying in tunnel construction sites. The laser-

scanned data were then post-processed using Leica Cyclone REGISTER 360 software 

v2022.1.0 to remove outlier points and refine the dataset. 

Since the field survey team operated the LiDAR instrument for 5 min, the required 

time constraint was calculated as A = 70 m2/4 min, allowing for a tolerance period to ac-

commodate the approach and retreat of the drone. Under the constraints of E = 25 lx and 

A = 0.3 m2/s, the OPS were determined as follows (Figure 8c): N = 2.8, t = 1/40 s, S = 3200, 

p = 1920 px, D = 3 m, and v = 0.2 m/s. The overall shooting method remained consistent 

with the previous sections. However, one notable difference from the previous sections 

was the deployment and distribution of GCPs. Although it was not feasible to place GCPs 



Remote Sens. 2025, 17, 1877 16 of 32 
 

 

evenly along the tunnel face due to safety concerns and restricted accessibility, an inde-

pendent frame was positioned in front of the tunnel face, equipped with five GCP QR 

codes (Figure 8d). These QR-coded GCPs were utilized to scale the reconstructed models 

and minimize systematic errors. 

Table 5. Leica BLK360 imaging laser scanner specifications (h�ps://leica-geosystems.com/prod-

ucts/laser-scanners/scanners/blk360 accessed on 2 March 2025). 

Field of view 360° (horizontal)/300° (vertical) 

Range 0.6–60 m 

Point measurement rate ≤360,000 pts/s 

Ranging accuracy 4 mm @ 10 m/7 mm @ 20 m 

Measurement speed <3 min for complete full dome scan 

3D point accuracy 6 mm @ 10 m/8 mm @ 20 m 

Additionally, the DJI Mavic 2 Pro drone camera could not capture the entire height 

from the floor to the ceiling (approximately 6.4 m) within its FOV when positioned 3 m 

away. As a result, the drone had to fly a zig-zag path (refer to Figure 2), which required 

acceleration and deceleration at both ends. Nonetheless, the majority of the shooting was 

conducted at a uniform drone speed, and only the frames captured during this uniform 

flight speed were utilized for analysis. 

Unlike the validation described in Section 3.1 or Section 3.2, obtaining a reference 

model for the tunnel face was not feasible due to time limitations. Instead, we compared 

the point clouds generated by both methods using quantitative indices such as point res-

olution and idealistic accuracy, and qualitative indices like joint expression capability. The 

results of these comparisons are presented in Section 4.2. 

4. Results 

Section 2 outlined the procedure for deriving the OPS under illuminance and time 

constraints. To highlight the importance of the OPS, we compared the quality of point 

clouds obtained using the OPS with those obtained using the APS (Section 3.1), with de-

tailed results presented in Section 4.1. Furthermore, to demonstrate the potential of the 

SfM–MVS method when utilizing the OPS, we conducted a comparative analysis of point 

cloud quality between SfM–MVS and LiDAR in an underground tunnel site (Section 3.2), 

where both lighting conditions and surveying time were limited. The results of this com-

parison are detailed in Section 4.2. 

4.1. Effectiveness of the OPS 

In Section 3.1, we evaluated the effectiveness of the OPS by comparing the quality of 

the point clouds obtained using the OPS and APS. First, the error levels in the point cloud 

of an indoor reference target, which consisted of flat planes, were assessed, and then the 

stdC2M distances for the joint planes on a rock mass outcrop in Mt. Gwanak were com-

pared. 

4.1.1. Point Cloud Errors for the Indoor Reference Target 

We generated 3D point clouds of an indoor reference target using the OPS and two 

APS under E = 100 lx and A = 1.4 m2/s, with five repetitions for each se�ing. The camera 

orientation and lens correction parameters were well calibrated, resulting in an average 

reprojection error of less than 1 px during the SfM procedure [39]—OPS = 0.67–0.7 px, 

APS#1 = 0.68–0.69 px, and APS#2 = 0.65–0.66 px. 
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Figure 9 illustrates the point cloud error levels for the reference. A significant differ-

ence in error levels was observed between the OPS and APS. The mean error level for the 

OPS (red dots in Figure 9) was 2.59 mm, while the APS results showed notably higher 

errors: 7.58 mm for APS#1 (cyan squares in Figure 9) and 8.67 mm for APS#2 (green dia-

monds in Figure 9). The improvement in error levels when using the OPS was expected, 

as it represents the minimum error achievable with photography se�ings derived from 

the error pre-determination model developed by Leem et al. [30], which has demonstrated 

high predictive performance (note the alignment between the predicted and observed 

RMSEs in Figure 9). Furthermore, severe distortion in the representation of flat planes was 

observed in the APS-generated point clouds, as shown in the side views of Figure 9. No-

tably, without modifying the existing illuminance and time constraints, substantially bet-

ter point cloud quality could be achieved simply by adjusting the camera se�ings and 

UAV flight methods. 

 

Figure 9. Comparison between the OPS and APS under E = 100 lx and A = 1.4 m2/s (D×v = 1.8 m2/s) 

constraints. The side views on the right are vertically exaggerated to help the reader’s understand-

ing. 

4.1.2. StdC2M Distances for the Joint Planes on an Outdoor Rock Mass 

We generated 3D models of an outdoor rock mass using both laser scanning and 

SfM–MVS. The laser-scanned model served as the reference, and we measured the 

stdC2M and the stdM3C2 between the reference model and those generated using SfM–

MVS. In total, 12 shots were taken, including four for the OPS and eight for the APS. Ad-

ditionally, the camera orientation and lens correction parameters for the SfM–MVS were 

well calibrated, with reprojection errors ranging from a minimum of 0.43 px to a maxi-

mum of 0.67 px. Since the mean values of C2M or M3C2 were significantly lower than the 
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std values (maximum mean of C2M: 0.038 mm, minimum stdC2M: 3.01 mm; maximum 

mean of M3C2: 0.057 mm, minimum stdM3C2: 3.04 mm), it can be inferred that the SfM–

MVS-generated models were well registered with the reference model. 

The stdC2M and stdM3C2 values of the OPS and APS are listed in Tables 6 and 7, 

respectively, with their comparison illustrated in Figure 10. In the figure, red dots repre-

sent the std values for the OPS, while black dots indicate the std values for the APS. It is 

evident that the red dots consistently lie below the black dots under both 50 and 1500 lx 

conditions. With the exception of two cases for stdC2M (joint planes #4 and #5, E = 1500 

lx), where the APS achieved the second lowest stdC2M, the lowest and second lowest 

stdC2M and stdM3C2 values were obtained using the OPS in all other cases. This result 

suggests that the OPS can generate 3D models that more closely resemble the reference 

than those created using the APS, thereby indicating that the OPS produced more accurate 

3D models. 

Table 6. StdC2M for each photography se�ing across joint planes #1 to #6, listed in millimeter units. 

The lowest and second-lowest stdC2M values for each plane are highlighted in bold. 

Planes

 

Se�ings 

#1 #2 #3 #4 #5 #6 Optimal 

5
0

 lx 

#1 
1.43 

1.09 

0.91 

0.92 

0.72 

0.68 

1.01 

0.98 

0.81 

0.70 

1.38 

1.09 
O 

#2 
2.16 

1.85 

1.51 

1.97 

1.27 

1.43 

1.49 

1.89 

1.23 

1.49 

3.18 

3.17 
X 

1
5

0
0

 lx
 

#3 
0.67 

0.55 

0.42 

0.30 

0.37 

0.43 

0.65 

0.71 

0.65 

0.43 

0.71 

0.58 
O 

#4 
1.94 

1.54 

0.94 

1.01 

1.02 

1.00 

2.16 

0.66 

0.96 

0.60 

1.37 

1.10 
X 

#5 
0.81 

1.06 

1.26 

0.66 

1.50 

0.66 

0.78 

0.76 

0.66 

1.82 

1.49 

0.82 
X 

#6 
1.12 

0.86 

0.90 

0.60 

1.09 

0.73 

0.17 

1.05 

2.25 

1.53 

0.25 

0.13 
X 

Table 7. StdM3C2 for each photography se�ing across joint planes #1 to #6, listed in millimeter units. 

The lowest and second-lowest stdM3C2 values for each plane are highlighted in bold. 

Planes

 

Se�ings 

#1 #2 #3 #4 #5 #6 Optimal 

5
0

 lx
 

#1 
1.92 

1.53 

1.05 

1.04 

0.85 

0.78 

1.26 

1.22 

0.98 

0.83 

1.66 

1.34 
O 

#2 
2.74 

2.52 

1.70 

2.17 

1.56 

1.74 

1.66 

2.22 

1.55 

1.88 

3.57 

3.71 
X 

1
5
0

0
 lx

 

#3 
0.95 

0.82 

0.44 

0.30 

0.38 

0.45 

0.79 

0.76 

0.71 

0.45 

0.78 

0.63 
O 

#4 
2.39 

2.01 

1.04 

1.11 

1.18 

1.14 

2.44 

0.87 

1.12 

0.72 

1.60 

1.29 
X 

#5 
1.21 

1.45 

1.37 

0.72 

1.67 

0.74 

1.00 

0.94 

0.77 

2.14 

1.68 

0.95 
X 

#6 
1.50 

1.19 

0.98 

0.63 

1.22 

0.79 

1.37 

1.26 

2.51 

1.63 

2.81 

1.41 
X 
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Figure 10. Comparison of std values for joint planes #1 to #6. Red dots represent the std values for 

the OPS, and black dots represent the std values for the APS: (a) StdC2M comparison; (b) stdM3C2 

comparison. 

4.2. The Potential of SfM–MVS Utilizing OPS for Enhanced 3D Modeling 

In Section 3.3, we generated the point cloud of an underground tunnel rock face using 

both SfM–MVS with OPS and LiDAR. During the SfM process, the reprojection error was 

measured at 0.54 px, confirming the calibration accuracy. Although the OPS were deter-

mined with a time constraint of 4 min, allowing for drone approach and retreat as well as 

acceleration and deceleration phases, the actual shooting time was extended to 5 min, 

matching the duration required for LiDAR operations. 

The LiDAR-generated point cloud is displayed in Figure 11a. The surveying team 

operated the LiDAR instrument to collect data over a 360-degree range, capturing a total 

of 12,100,000 points. However, the point resolution for the tunnel face was relatively low, 

at approximately 1,700,000 points, equivalent to 150 pts/m2. This lower point density re-

sulted from the chosen scanning approach, where the surveying team conducted a full 

360-degree scan instead of restricting data collection to the tunnel face. Although the in-

strument is capable of achieving higher resolutions, the limited shooting time of 5 min 

constrained the resolution of the LiDAR-generated point cloud, as LiDAR collects discrete 
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point samples rather than capturing continuous surface data [51]. As a result of the active 

nature of laser scanning [51], intensity data were captured, offering some insights into the 

surface characteristics. However, this method was ineffective in capturing the texture of 

the rock mass, even though texture is a crucial factor in rock characterization. According 

to its specifications (Table 5), the LiDAR method would have resulted in a point cloud 

error of 6 mm when measured from a distance of 10 m. While higher-end LiDAR units 

could achieve greater point density and accuracy within the same time frame, this would 

come at the cost of higher equipment expenses. 

SfM–MVS generated a high-resolution point cloud of the tunnel face, containing ap-

proximately 35,100,000 points (670 pts/m), which increased to 39,700,000 points when in-

cluding the surrounding area. This resolution is approximately 20 times higher than that 

achieved by LiDAR, as illustrated in Figure 11b. The significant contrast in point counts 

mainly stems from whether the instrument only targets the tunnel face. When considering 

the total number of points generated, the difference narrows to approximately 3.3 times. 

Although additional time is required to generate 3D point clouds, the duration varies 

based on computational power, resolution, and the number of images used. Since LiDAR 

data also require post-processing, our focus was on the potential to generate high-resolu-

tion 3D models within the allocated field shooting time. Since SfM–MVS is based on pho-

tographic images, it effectively captures the texture of the rock mass, though it lacks the 

ability to obtain intensity data like LiDAR. The passive nature of photographic images 

allows SfM–MVS to achieve high-resolution data over a broad area within a short shoot-

ing period [51]. When utilizing OPS, the SfM–MVS method would likely result in a point 

cloud error of 2 mm under the constraints of E = 100 lx and A = 0.3 m2/s (refer to Section 

2.1). 

In addition to quantitative indices, we qualitatively compared the point clouds from 

both methods. Given that the target area was a tunnel construction site, we focused on the 

capability of each method to express joint planes and joint traces, which are critical for 

rock mass stability analysis. Figure 12a presents the comparison of joint plane expression 

capabilities. Both methods successfully depicted the normal vectors of joint planes within 

a five-degree deviation, which is be�er than typical human bias. However, both methods 

exhibited point resolutions lower than the commonly referenced laboratory values of 1000 

pts/m [52] to 10,000 pts/m [53] used for measuring surface roughness. However, due to its 

lower resolution, LiDAR had more significant issues with underestimating the joint 

roughness compared to SfM–MVS [54]. 
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Figure 11. Point clouds generated by LiDAR and SfM–MVS with OPS: (a) point cloud generated by 

LiDAR; (b) point cloud generated by SfM–MVS utilizing OPS. The image acquisition trajectories 

(UAV flight path) are illustrated in the upper right section. 

Shadow zones (yellow ellipse in Figure 12a), areas where no points are recorded, ap-

peared in the LiDAR data due to the use of a terrestrial laser scanner (TLS). Since TLS 

emits light from a fixed position, the light often fails to reach areas obscured from its direct 

line of sight, resulting in shadow zones. These absences of points can complicate the recog-

nition of joint planes and their orientations during data analysis. In contrast, dark regions 

appeared in the SfM–MVS point cloud; however, unlike in LiDAR data, dark-colored 

points were recorded in these areas. This difference arises because SfM–MVS captures 

images from multiple viewpoints. While these dark-colored points may be subject to po-

tential systematic errors due to low saturation, they still provide useful information for 

detecting plane existence and determining orientation. It is important to note that the dark 

regions in the SfM–MVS data are not equivalent to the shadow zones found in LiDAR 

data. While LiDAR combined with UAV technology (ULS) may mitigate shadow zone 

issues, it introduces other problems, including reduced accuracy and resolution, particu-

larly in GNSS-denied environments [1]. 
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Figure 12. Comparison of rock mass characterization capabilities between SfM–MVS and LiDAR: 

(a) joint plane expression capabilities; (b) joint trace expression capabilities. 

Figure 12b presents a comparison of the joint trace expression capabilities. Joint traces 

vary in aperture from sub-millimeter to several millimeters. While LiDAR produced a 

point cloud that was overly sparse to effectively depict the joint traces, SfM–MVS was able 

to represent them up to 2 mm. Beyond resolution, the texture data captured by SfM–MVS 

proved advantageous in depicting joint traces, which appeared as dark-colored points 

(yellow ellipse in Figure 12b). The overall performance comparison between the two 

methods is summarized in Table 8. 

Table 8. Performance comparison between SfM-MVS utilizing the OPS and LiDAR at the Yeoju-si 

tunnel site 

 SfM–MVS LiDAR 

Instrument DJI Mavic 2 Pro Leica BLK 360 

Capital cost USD 1770 USD 15545 

Survey time 5 min 5 min 

Resolution 35,100,000 pts (670 pts/m) 
Rock face: 1,700,000 pts (150 pts/m) 

Whole tunnel: 12,100,000 pts (400 pts/m) 

Accuracy 
2 mm (@ OPS under E = 25 

lx and A = 0.3 m2/s) 
6 mm (@ D = 10 m) 

Features 

Texture data 

Joints well depicted 

Need for drone control 

Intensity data  

Shadow zones  

Simple scanning (⸪ TLS) 

  



Remote Sens. 2025, 17, 1877 23 of 32 
 

 

5. Discussion 

Although the quality of input images in the SfM–MVS procedure significantly influ-

ences the resulting 3D model accuracy, limited research has been conducted on optimiz-

ing both camera se�ings and UAV flight methods in an integrated manner. In contrast, 

this study introduced a simultaneous multi-parameter optimization framework that 

jointly considers the effects of camera se�ings, flight methods, and environmental condi-

tions (i.e., illumination and time) on reconstruction accuracy. By systematically analyzing 

the influence of each contributing factor on reconstruction error, the proposed method 

identifies an optimal combination of photography se�ings that minimizes overall error, 

resulting in a globally optimal configuration. 

5.1. Robustness of the OPS Derivation Procedure 

In this study, we introduced a procedure to determine the OPS under illuminance 

and time constraints and validated its significance through a comparison with APS and 

LiDAR. Nonetheless, practical limitations may sometimes prevent the application of the 

derived OPS due to the limited availability of several factors such as UAV speed, distance, 

shu�er speed, or resolution. For example, UAV speed and distance may be constrained 

by speed regulations, physical performance limitations, or altitude restrictions. These fac-

tors then act as upper or lower bounds for UAV speed and distance. Despite these con-

straints, a sub-optimal D–v combination can still be determined within the restricted D–v 

zone, as long as this feasible D–v combination meets the required A. For instance, if the 

minimum v is restricted to 0.6 m/s, one cannot use the optimal UAV flight method of v = 

0.5 m/s and D = 2.5 m when A = 1 m2/s is required, as shown in Figure 3. In such cases, an 

alternative approach could be to adopt the second-best UAV flight method, which might 

involve approximately v = 0.6 m/s and D = 2 m, though this may result in a slightly higher 

error. 

However, this represents an ideal scenario, and in practice, it is necessary to intro-

duce the concept of a safety factor. For instance, drone ba�ery performance can signifi-

cantly influence UAV flight methods. Ba�ery efficiency is closely linked to UAV speed, 

and in the case of large-scale sites, ba�ery replacement must also be considered when 

designing an optimal flight strategy. Quantifying ba�ery efficiency is challenging due to 

its strong dependency on hardware specifications and external environmental factors 

such as temperature and wind. Since the primary objective of this study was to propose a 

practical optimization strategy for UAV-based 3D reconstruction, ba�ery performance 

considerations were not included in the optimization framework. Nevertheless, to ensure 

more stable flights and reliable image acquisition, particularly for large-scale surveys, fu-

ture studies should explore the integration of a safety factor into the optimization of cam-

era se�ings and UAV flight paths. 

Occasionally, images captured under certain conditions may exhibit periodic noise, 

particularly under artificial lighting such as the LED strobe lights commonly used in un-

derground mines or tunnels. This phenomenon often occurs when the camera’s rolling 

shu�er fails to synchronize with oscillating light sources. Although the negative effects of 

periodic noise were not specifically evaluated in this study, they can be mitigated by ad-

justing the photography se�ings. If images captured using the OPS display periodic noise, 

users can a�empt alternative se�ings with varying shu�er speeds to eliminate the noise, 

albeit with a potentially higher error margin. For example, if the optimal camera se�ings 

shown in Figure 1 result in periodic noise, alternative se�ings like N = 3.2, t = 1/120 s, and 

S = 3200 or N = 2.8, t = 1/80 s, and S = 1600 can be tested. If these adjustments do not display 

periodic noise, they can be adopted despite the slightly increased error. If not, further 

adjustments should be explored until the issue is resolved. 
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The resolution of the resultant point cloud is crucial for analyses such as surface 

roughness measurements. For instance, a resolution ranging from 1000 pts/m [52] to 

10,000 pts/m [53] is typically required to accurately measure the surface roughness in la-

boratory se�ings. The maximum resolution of a point cloud is achieved at the ideal GSD, 

which involves deriving a point from each image pixel. Thus, the sampling distance of the 

resultant point cloud, in meter units, is approximately (D × d)/(f × p), where d and f are 

generally fixed. Therefore, the resolution is primarily influenced by D and p. 

Figure 13 illustrates the change in OPS when an additional GSD constraint is consid-

ered. Under E = 100 lx, D = 5 m, and v = 0.2 m/s, the optimal camera se�ings without the 

GSD constraint are t = 1/80 s, N = 2.8, S = 1600, and p = 1920, which achieve an ideal GSD 

of 3.3 mm and a minimum error of 2.3 mm (Figure 13a). When GSD is set to be less than 

2 mm, se�ings that do not meet this requirement—including the previously optimal set-

tings—are excluded (Figure 13c). The new alternative optimal camera se�ings in this case 

are t = 1/40 s, N = 2.8, S = 800, and p = 3840, resulting in a slightly higher minimum error 

of 2.5 mm. Considering that the resolution constraint increases the minimum achievable 

error, the revised se�ings still minimize the error while satisfying the resolution require-

ment. With these new E–D–v charts (note Figure 3a), it is possible to complete the new D–

v chart for UAV flight method optimization (Figure 13d). It shows that regions with rela-

tively far distances (D ≥ 4 m) are strongly affected by the GSD constraint (compare Figure 

13b,d), which significantly impacts the selection of optimal UAV flight methods, particu-

larly in higher A values. 

 

Figure 13. Comparison of the OPS considering the GSD constraint: (a) the E–D–v chart under E = 

100 lx, v = 0.2 m/s, and D = 5 m; (b) the D–v chart for E = 100 lx, identical to Figure 3b; (c) the new E–

D–v chart with a GSD constraint of 2 mm; (d) the new D–v chart for E = 100 lx, reflecting the GSD 

constraint. 

We introduced a procedure for determining the OPS for UAV-based SfM–MVS with 

parallel image acquisition. However, establishing the OPS for still imaging is beyond the 

scope of this study, as convergent acquisition schemes may offer be�er accuracy for still 
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images [7]. Additionally, when considering time constraints, it is important to account for 

the acceleration or deceleration between still photography locations, which can vary sig-

nificantly based on the physical performance of the camera platform. Nonetheless, since 

motion blur is not a concern in still images, a slower shu�er speed can be used. This allows 

for a higher SNR in the image, making the prevention of out-of-focus blur the top priority. 

Therefore, we recommend se�ing the highest possible F-number, then the lowest ISO, and 

finally the slowest shu�er speed that still maintains appropriate image brightness (Equa-

tion (2)). 

This study assumed uniform photography se�ings across the entire image set. Con-

sequently, the performance of the OPS might be compromised when using mixed image 

sets to generate a point cloud. For instance, if the target area includes both brightly and 

darkly illuminated areas, such as shadows, a separate OPS would be required for each 

lighting condition. This would result in a transition zone where images used for 3D re-

construction are captured with different se�ings. The performance in this transition zone 

could be diminished due to the inconsistent distortions across image sets. A study on or-

thophotos by Aasen et al. [3] noted that details in overlapping images tend to blend, rather 

than selecting the best details from each. Similarly, we anticipate that errors in the transi-

tion zone may average between the errors observed in the brightly and darkly lit regions. 

Another challenge is when the surveyed area exhibits significant terrain variation, 

making it difficult to maintain a uniform distance from the target. In such cases, it is chal-

lenging to clearly define the distance to the target, or multiple distances may coexist. Sim-

ilar to the transition zone observed under mixed lighting conditions, it becomes impossi-

ble to optimize the photography se�ings using a single OPS. A practical solution to over-

come this is to increase the minimum distance for the OPS analysis area, se�ing it signifi-

cantly larger than the terrain variation (sub-optimal OPS selection), where the impact of 

height differences can be neglected. However, identifying a minimum distance that suffi-

ciently mitigates the effects of terrain variation requires further research. 

UAV-based image acquisition inherently involves minor vibrations during flight, 

and although gimbals are employed to stabilize the camera, complete elimination of vi-

brational motion is not achievable. At higher flight speeds, motion blur typically domi-

nates image degradation, rendering vibration-induced blur largely negligible. However, 

when UAVs operate at sufficiently low speeds, vibration blur becomes significant. This 

introduces a trade-off in flight speed selection: reducing speed to improve image sharp-

ness inadvertently increases susceptibility to vibration-induced distortions. The magni-

tude of the vibration blur is influenced by various factors, including drone hardware spec-

ifications, environmental conditions (e.g., wind), and the effectiveness of internal damp-

ing mechanisms. Due to the stochastic nature of these factors, quantifying vibration blur 

is challenging. Since the objective of this study was to propose a practical optimization 

scheme for photographic se�ings, vibration blur was not explicitly considered in this 

study. Nevertheless, for more robust image acquisition strategies—particularly in low-

speed UAV operations where vibration effects are more pronounced—future research 

should explore integrating vibration effects into the optimization of photography se�ings. 

5.2. Sensitivity of the OPS 

In Section 4, we demonstrated the effectiveness and potential of the OPS. When the 

SfM–MVS utilized the OPS, it achieved significant improvements in point cloud quality 

compared to the APS, without requiring additional lighting or extra time. However, it is 

crucial to use the optimal camera se�ings in conjunction with the optimal UAV flight 

methods, as the lowest error is achieved only when both are applied together. If only par-

tial se�ings are implemented, such as using only the optimal UAV flight method while 

selecting camera se�ings arbitrarily, the combination is no longer optimal, and alternative 
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se�ings may produce be�er results. Since camera se�ings are less likely to be adjusted 

during image acquisition, it is essential to meticulously maintain the UAV flight method 

through precise UAV path programming to preserve the effectiveness of the OPS. 

In Figure 14, we demonstrate the variation in optimal camera se�ings based on UAV 

speeds (0.1, 0.5, and 0.9 m/s) and distances (1–9 m) under specific illuminance levels (600, 

770, 970, and 1550 lx). The figure illustrates trends in camera se�ings adjustments accord-

ing to UAV flight methods (D, v). Along the lines representing constant UAV speeds (col-

ored red, green, and blue in Figure 14), one trend observed is the decrease in the F-number 

at larger distances. As the distance increases, motion blur in the image decreases, shifting 

the priority to reducing out-of-focus blur by lowering the F-number. Another trend is the 

need for faster shu�er speeds at higher UAV speeds for the same distance, moving from 

red to green and then from green to blue in Figure 14. This adjustment is necessary to 

reduce motion blur, thus taking precedence over reducing the F-number at higher UAV 

speeds. Once the maximum aperture (or minimum F-number) is reached, using a slower 

shu�er speed becomes the only option. Importantly, the selection of optimal camera set-

tings is more critical at close distances and slow UAV speeds and becomes less sensitive 

at greater distances and faster UAV speeds. Therefore, precise maintenance of the UAV 

flight method is crucial when operating under short time constraints. 

 

Figure 14. The sensitivity of selecting optimal camera se�ings for UAVs varies with changes in 

speed (0.1, 0.5, and 0.9 m/s), distance (1–9 m), and illuminance (600, 770, 970, and 1550 lx). Subfigures 

(a–d) correspond to illuminance levels of 600, 770, 970, and 1550 lx, respectively. Each point on the 

chart represents the optimal camera se�ings under specific E–D–v conditions. 

The variation in optimal camera se�ings also correlates with illumination, though no 

clear relationship between reducing the F-number and using faster shu�er speeds is evi-

dent when illumination changes. However, a consistent trend is observed in the camera 

se�ings moving toward the lower left of the charts from Figure 14a–d, despite varying 

illuminance intervals (ΔE = 170, 200, and 480 lx). For instance, at D = 1 m and v = 0.5 m/s 

(top points on the green lines), the F-number (N) decreased from 6.3 to 5 (a reduction to 

0.8 times the original) when the illumination increased from 600 to 770 lx (ΔE = 170 lx; 

from Figure 14a,b). Meanwhile, N decreased from 4.2 to 2.5 (a reduction of 0.6 times the 

original) when the illumination jumped from 970 to 1550 lx (ΔE = 480 lx; from Figure 

14c,d). Despite the near tripling in illuminance change, the alteration in camera se�ings 
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was relatively minor. This indicates that the selection of optimal camera se�ings is partic-

ularly sensitive under low illumination conditions, similar to the sensitivity observed un-

der limited time constraints. The balance between error minimization and sensitivity un-

der varying conditions warrants further investigation. Consequently, extra caution is ad-

vised when employing the OPS under low illuminance and short time constraints. 

Concerns have been raised about the sufficiency of SfM–MVS-generated point clouds 

in underground tunnels, where limited lighting and constrained surveying time might 

distort the captured images [29]. Traditionally, LiDAR has been used for 3D rock mass 

modeling in such underground spaces, despite its high capital costs, issues with shadow 

zones, lack of texture detail, and lengthy surveying times. However, when SfM–MVS is 

utilized with OPS, it shows potential for more effectively characterizing underground 

rock masses by generating high-quality 3D point clouds at a lower cost (refer to Table 8). 

Previous studies [1,6,7] have noted the superior performance of SfM–MVS compared to 

LiDAR, and our findings reinforce this advantage in challenging environments character-

ized by low lighting and limited time. The purpose of this study was not to claim the 

outright superiority of SfM–MVS over LiDAR but to demonstrate that SfM–MVS can 

achieve sufficient performance even in challenging environments. As discussed, each 

method has its own advantages and limitations, and they should ideally be used in a com-

plementary manner. 

Certain challenges may arise when applying UAV-derived SfM–MVS in under-

ground spaces. For instance, a single UAV may not satisfy the time constraints due to 

ongoing construction activities. Operating multiple UAVs simultaneously could be a via-

ble solution, as the cost of moderate UAVs is relatively low compared to LiDAR and other 

laser scanning methods. Similarly, the accuracy of the resultant point cloud could be im-

proved with the use of multiple UAVs. For example, as shown in Figure 3, using a single 

UAV under a time constraint of A = 1 m2/s might achieve a minimum error of approxi-

mately 1.7 mm. However, by deploying two UAVs simultaneously, where each UAV co-

vers half of the target area and operates under a time constraint of A = 0.5 m2/s, the mini-

mum error could be reduced to approximately 1.2 mm. 

Excessively low illuminance conditions in underground tunnels pose a significant 

challenge. In such cases, no camera se�ings may achieve adequate image brightness 

(Equation (2)), and the impact of read or dark current noise becomes more pronounced. 

Addressing this lack of light with field lighting alone may not be feasible, as it is difficult 

to increase the illumination across an entire rock face in an underground tunnel. A more 

practical solution might involve equipping UAVs with their own lighting sources to illu-

minate the specific areas being photographed. However, to avoid systematic errors, the 

lighting must be homogeneous across the scene and capable of covering a larger area than 

the camera’s FOV. Furthermore, the distance from the target affects the illumination in-

tensity, influencing the selection of OPS. Future research should explore this relationship 

further and its impact on determining OPS. 

6. Conclusions 

Based on the error prediction model developed in our previous work [30], we iden-

tified the optimal photography se�ings that minimize error under specific illuminance 

and time constraints. The efficacy of the OPS was validated by comparing the point cloud 

quality obtained from both an indoor reference target and an outdoor rock mass, using 

optimal versus arbitrary photography se�ings. The use of OPS enabled the generation of 

higher-quality point clouds without requiring increased illumination or additional sur-

veying time. 

Furthermore, we demonstrated the potential of SfM–MVS, utilizing the OPS, at an 

underground tunnel construction site by comparing its performance with the LiDAR 
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method. Given the low illuminance and limited surveying time typical of such environ-

ments, which are generally challenging for photography, SfM–MVS with the OPS showed 

the potential to be more effective than LiDAR, offering higher accuracy and resolution at 

a lower cost. 
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Appendix A 

This section provides a brief summary of the theoretical background for the error 

predetermination for each photography se�ing [30]. Equation (1) suggests that the error 

present in the image is propagated to the resulting point cloud, where it is amplified by 

the scaling factor s. The error within the pixel domain of the image can be quantified using 

Equation (A1) [30]. 

���
� = ∫ ∫ ∑ ∑ �P�(�, �)�(�, �)� × {(� − �)� + (� − �)�}� ��

�.�

��.�

�.�

��.�
 �� �� [px�], (A1)

where the indices i and j represent the pixel coordinates within an image and P((i,j)∣(x,y)) 

denotes the probability that a point (x,y), where x and y are within the range [−0.5,0.5], is 

expected to be observed at the pixel location (0,0) but is instead observed at a different 

pixel location (i,j) due to distortion effects. This probability is determined by the extent of 

distortion within the pixel domain, represented by Δx and Δy, which arise from various 

sources such as motion blur, out-of-focus blur, and noise. 

The magnitude of motion blur, denoted as B, is determined using Equation (A2), 

while the distortion effects caused by motion blur, represented by Δxmb and Δymb, are cal-

culated using Equation (A3) [30]. 
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where d stands for the sensor size, U denotes a uniform probability density distribution, 

and Trap refers to a trapezoidal-shaped probability density distribution. The influence of 

the maximum template size M utilized in the MVS algorithm was analyzed by Leem et al. 

[30], highlighting its role in mitigating the motion blur distortion when B exceeds M. 
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The level of out-of-focus blur, represented by σob, is determined using Equation (A4), 

while the distortion effects resulting from out-of-focus blur, denoted as Δxob and Δyob, are 

calculated using Equation (A5) [30]. 

��� =
|���|

��

��

�(���)

�

�
 [px], (A4)

∆���~N(0, ���), ∆���~N(0, σ��), (A5)

where the notation N stands for a normal probability density distribution, and H denotes 

the focus distance, which, for this work, was set to the hyperfocal distance. This se�ing 

ensures that the camera maintains sharp focus from the hyperfocal distance to infinity, 

optimizing the depth of field for the broadest range of clear vision. 

The noise-to-signal ratio or the reciprocal of SNR (signal-to-noise ratio), represented 

by σn, is derived from Equation (A6), while the distortion effects caused by noise, denoted 

as Δxn and Δyn, are calculated using Equation (A7) [30]. 
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where E stands for the level of illumination and Q denotes the noise sensitivity coefficient, 

which varies with the type of camera used. The probability P((i,j)∣(x,y)) can then be deter-

mined through Monte Carlo simulations, incorporating the distortion effects caused by 

motion blur (Equation (A3)), out-of-focus blur (Equation (A5)), and noise (Equation (A7)). 

Abbreviations and Symbols 

The following abbreviations and symbols are used in this manuscript: 

Abbreviations 

SfM Structure from motion 

MVS Multiview stereo 

LiDAR Light Detection and Ranging 

DEM Digital elevation model 

UAV Unmanned aerial vehicle 

PP Point-to-point 

PR Point-to-raster 

RR Raster-to-raster 

TS Total station 

dGPS Differential global positioning system 

RMSE Root mean squared error 

ME Mean error 

MAE Mean absolute error 

OPS Optimal photography se�ings 

APS Arbitrary photography se�ings 

ISO International Organization for Standardization 

SNR Signal-to-noise ratio 

BA Bundle adjustment 

GCP Ground control point 

FOV Field of view 

GSD Ground sampling distance 

C2M Cloud-to-mesh 

M3C2 Multiscale model-to-model cloud comparison 

stdC2M Standard deviation of the C2M distances 

stdM3C2 Standard deviation of the M3C2 distances 

ICP Iterative closest point 
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GNSS Global Navigation Satellite System 

Symbols 

t Camera shu�er speed 

N Camera F-number 

S Camera ISO value 

p Camera pixel resolution 

D Distance from the target 

v UAV or camera platform speed 

d Camera sensor size 

f Camera focal length 

ε3D Errors in SfM–MVS-generated point clouds 

ε2D Image errors 

εplane Point-to-plane-type RMSE 

εpoint Point-to-point-type RMSE, equivalent to ε3D 

s Scaling factor 

E Illumination 

M Maximum template size 

Q Nosie sensitivity coefficient 

A Area photographed per unit of time 
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