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Abstract
Purpose  Automated plot extraction in agronomic research field trials is essential for high-
throughput phenotyping and precision agriculture. Accurate delineation of plot boundar-
ies enables reliable crop type classification, yield estimation, and crop health monitoring. 
However, traditional plot extraction methods rely heavily on manual digitization, which is 
time-consuming, labor-intensive, and prone to inconsistencies. This study aims to develop 
a Segment Anything Model (SAM)-based framework that automates plot extraction while 
maintaining high accuracy across diverse agricultural field conditions.
Methods  The proposed framework consists of mask generation, plot orientation estima-
tion, and plot refinement. SAM is leveraged to generate plot masks, which are subsequently 
filtered and refined to ensure precise boundary delineation. The method is designed to func-
tion without the need for model training or fine-tuning, making it highly adaptable across 
different datasets.
Results  The framework was validated on five datasets, demonstrating robust performance 
under varying field conditions. The pixel-based evaluation yielded an average F1 score 
of 89.54%. For polygon-based evaluation, the framework achieved 99.71% precision at 
IoU=50% and an average precision of 68.51% across IoU thresholds from 50 to 95%, con-
firming its ability to accurately extract plot boundaries. A Canopeo-based regression analy-
sis further demonstrated that the extracted plots provide more reliable phenotypic estimates 
compared to manually digitized ground reference data.
Conclusions  The proposed framework significantly reduces manual effort while ensuring 
high precision and scalability for large-scale phenotyping applications. By relying solely on 
RGB imagery and zero-shot segmentation, it enhances accessibility for real-world agricul-
tural research. Future work will focus on extending the framework to irregular plot struc-
tures, diverse crop types, and computational optimizations for large-scale implementation.

Keywords  Plot boundary · Plot extraction · Segment anything model (SAM) · High-
throughput phenotyping (HTP)
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Introduction

Phenotyping plants on a field scale is crucial for understanding how genetic makeup and 
environmental factors affect plant growth and its development (Araus & Cairns, 2014; Fio-
rani & Schurr, 2013). This process involves systematically measuring and analyzing a range 
of plant characteristics throughout their developmental stages (Cobb et al., 2013). The com-
plexity of plant traits necessitates a great deal of field measurements for comprehensive 
analysis (Furbank & Tester, 2011). In this manner, high-throughput phenotyping (HTP) has 
become a critical area of exploration in precision agriculture. HTP in a precise and non-
invasive way is paramount for leveraging the advancements in biotechnological fields such 
as DNA sequencing and gene editing (Furbank & Tester, 2011; Fahlgren et al., 2015) within 
plant breeding (Li et al., 2020).

Many studies have demonstrated the importance of plot-level analysis for HTP (Her-
rero-Huerta et al., 2020), plant lodging (Kumar et al., 2024), yield prediction (Fieuzal 
et al.,  2017; Aghighi et al.,  2018; Kuwata & Shibasaki,  2016; You et al.,  2017), and 
biomass estimation (Masjedi et al., 2019) as a precursor for agronomic research. Each 
field trial is often represented by research plots with different treatments or genotypes 
(Sankaran et al., 2015). Since a wide range of biophysical properties can be associated 
through correlations with phenotypic information, and phenotypic features are often 
summarized at the plot level (Lelong et al., 2008), a critical preliminary step in agro-
nomic research involves extracting plot-specific data. Traditional methods to collect 
the data at the plot level depend on manual digitization of plot boundaries, which is 
often laborious and impractical. This dependency on manual intervention constrains the 
scalability and efficiency of the phenotyping process, highlighting the need for more 
automated solutions to enhance the potential of HTP in agricultural research.

Unoccupied Aerial Vehicle (UAV) offers a viable solution for regular and extensive data 
collection at plot level by utilizing photogrammetry and remote sensing techniques (Zhang 
& Kovacs, 2012; Sankaran et al., 2015; Feng et al., 2021). It has demonstrated considerable 
potential for applications in the agricultural area due to its capability to promptly gather 
data across expansive areas (Zhang et al., 2021; Fahlgren et al., 2015), leading to a substan-
tial transform in facilitating a more efficient and accurate assessment of plant traits under 
varying environmental conditions (Li et al., 2014). These technological advancements are 
attributed to the development of more refined sensors, improved data collection platforms, 
and advanced data analysis techniques (Weiss et al., 2020; Araus & Cairns, 2014).

Consequently, many studies have utilized UAV remote sensing data to advance agri-
cultural research. In the task of extracting plots for agronomic research field trials, RGB 
imagery and LiDAR point clouds have been pivotal as they provide clear visual boundar-
ies and height values. Makanza et al. (2018) assessed crop cover and canopy senescence 
in maize field trials, demonstrating a significant correlation between UAV imagery and 
canopy senescence. Despite the promising findings, their methodology relies on manual 
plot digitization, which poses a limitation to fully automated HTP capabilities. Khan and 
Miklavcic (2019) proposed an image-based optimization algorithm to find the alignment of 
plots. They proposed the energy function to locate the optimal position of plots and lever-
aged particle swarm optimization to specify the location of separated field plots robustly 
and accurately. Yang et al. (2021) proposed a Comb Function Optimization Plot Extrac-
tion (COPE) to locate the rows and columns of plots that adhere to a strict grid-like lay-
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out. Recent advancements in deep learning-based segmentation models have significantly 
improved the accuracy of agricultural applications. For instance, Elmessery et al. (2024) 
employed SegFormer to perform semantic segmentation for microbial alterations in straw-
berry plants, demonstrating the effectiveness of transformer-based models in agricultural 
image analysis. Ribera et al. (2017) proposed a convolutional neural network to identify and 
count each plant from imagery.

On the other hand, Sofonia et al. (2019) examined both the UAV LiDAR and photogram-
metry system in monitoring sugarcane growth, suggesting that the UAV LiDAR can provide 
more consistent information in estimating the biophysical parameters. Lin and Habib (2021) 
used a UAV LiDAR point cloud to identify rows and columns of the plot automatically. The 
algorithm is based on the principle that areas with higher point densities or elevations typi-
cally indicate the presence of vegetation. Its effectiveness has been proven across different 
agricultural conditions, including various crops, growth stages, and planting densities.

Although various methods have demonstrated their capability for accurate plot extrac-
tion, certain research gaps persist, particularly when dealing with non-ideal field conditions. 
Their performance can be influenced by multiple factors such as the crop’s growth stage, 
background interference, plot size, and the grid’s pattern or orientation. To mitigate such 
influences, it is crucial to enhance the generalization capabilities of the model or algorithm. 
Segment Anything Model (SAM), created by the Meta AI research team, has showcased 
remarkable generalization capabilities in image segmentation tasks, particularly highlight-
ing its exceptional zero-shot performance. Introducing a novel promptable segmentation, 
the model was designed for zero-shot transfer (Kirillov et al.,  2023). Meanwhile, there 
have been attempts to deploy SAM in the remote sensing domain (Osco et al., 2023; Gui 
et al., 2024), there are only a few studies conducted in agricultural applications (Chen et 
al.,  2024). Considering the generalization capability and its competitive performance to 
fully supervised state-of-the-art models, SAM can effectively mitigate the influence of vari-
ous factors in plot extraction scenarios.

This paper presents a framework for automated plot extraction by integrating SAM to 
address the challenges under diverse and complex field conditions. By taking advantage of 
the zero-shot capabilities of SAM, the framework can better accommodate irregular grid 
patterns, variations in crop growth stages, and different crop types while minimizing the 
impact of background interference. Furthermore, the proposed framework solely relies on 
RGB images and does not necessitate any training process. This feature can offer signifi-
cant advantages: (i) it can be implemented using only UAV RGB camera systems with no 
multi-spectral or LiDAR sensors, and (ii) the performance of the model is not contingent on 
specific training data, ensuring more consistent results across different environments. This 
characteristic enhances the framework’s accessibility and cost-effectiveness, making it a 
practical solution for widespread agricultural applications. In the segmentation stage, a pre-
processed orthomosaic UAV RGB image is utilized to generate masks using SAM. It then 
estimates the orientation of the field trials to appropriately rotate the image orthogonally, 
enhancing the quality of the segmentation results. The segmented masks are subsequently 
converted into polygons, which undergo a series of refining processes. Finally, the refined 
plots are projected onto the corresponding coordinate systems.

The objectives of this study are to (i) explore the feasibility of SAM, (ii) establish a 
framework for automated plot extraction that incorporates SAM, and (iii) evaluate the per-
formance of the proposed framework across various plot extraction scenarios. The expected 
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outcomes of this study aim to diminish the need for manual labor in precise plot extraction 
and offer a more robust and versatile solution for plot extraction in precision agriculture, 
thereby ultimately contributing to improving high-throughput phenotyping and precision 
agriculture practices. The remainder of this paper is structured as follows. Section "Materi-
als and methods" details the datasets and the study area used in the experiment, along with 
the methodology employed in the proposed framework. Section "Results and discussion" 
presents the results of the study and provides an in-depth discussion of the findings. Finally, 
Sect. "Conclusions" offers conclusions drawn from the research work.

Materials and methods

Datasets description

The study sites are located across four distinct states within the United States. Table 1 shows 
the summary of the datasets, showing the five datasets that are collected across the US con-
tinent. Figure 1 illustrates the locations where the UAV imagery was captured over wheat 
crop field trials, alongside the orthophotos generated using photogrammetry software. The 
selection of these sites was based on their distinct characteristics, which have the potential 
to influence plot extraction performance. Key factors considered include plot dimensions, 
background variations, grid patterns, and growth stages at the time of data collection. As 
shown in Fig. 1, the planting orientation of Datasets W-I and W-IV aligns closely with the 
cardinal directions, whereas Datasets W-II and W-III exhibit a slight tilt, and Dataset W-V 
shows moderate tiltness. The datasets also feature variations in plot dimensions, reflecting 
the diversity of field trial designs. The regions of interest (ROI) were selected to focus on 
specific treatment groups, with row and column numbering customized to align with each 
study’s design. The number of plots within each dataset’s ROI was substantial, with counts 
of 569, 500, 803, 656, and 260 for Datasets W-I, W-II, W-III, W-IV, and W-V, respectively. 
Additionally, differences in crop growth stages across datasets contribute to variations in 
plot appearance and grid patterns. These factors underscore the complexity of accurately 
capturing and analyzing agricultural data across diverse field trials. A robust and adaptable 
plot extraction approach is essential to accommodate these variations and ensure reliable 
performance under different field conditions.

Table 1  Summary of datasets used in this study 
Dataset Crop 

type
Location Collection 

date
Day after
planting

Reso-
lution
(cm)

Plot dimension
(w × h)

Num-
ber of
plots

W-I Wheat Yolo County, 
California

05/09/2022 159 1.4 1.2 m×3.3 m 569

W-II Elder County, Utah 06/28/2022 238 1.1 1.2 m×3.25 m 500
W-III Ellis County, Kansas 05/19/2022 226 1.1 2.43 m×1.2 m 803
W-IV Potter County, Texas 05/11/2022 204 0.8 3 m×1 m 656
W-V Tompkins County, 

New York
05/11/2022 210 1.8 3.7 m×1 m 260

The table includes details on crop type, location, collection date, days after planting, image resolution, plot 
dimensions, and the number of plots for each dataset
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Computational environment

All experiments were performed on a machine with the following hardware and software 
configurations: a 13 th Gen Intel(R) Core(TM) i9-13900 K CPU @ 5.80 GHz with 24 cores 
(Intel Corporation, Santa Clara, CA, USA), an NVIDIA GeForce RTX 4090 GPU with 24 
GB VRAM running CUDA Version 12.2 (NVIDIA Corporation, Santa Clara, CA, USA), 
and 128 GB of DDR4 RAM. The system operated on Ubuntu 22.04.3 LTS with Kernel Ver-
sion 6.8.0–40-generic. The experiments were conducted in a Python 3.9.18 environment 
with PyTorch 2.4.0, leveraging CUDA 12.4 for GPU-accelerated computations.

Fig. 1  Locations of the study sites and corresponding orthophotos used in this study. The UAV imagery 
was captured over wheat crop field trials across five distinct datasets, highlighting variations in plot di-
mensions, orientations, and grid patterns
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Methodology for plot extraction

The proposed framework consists of mask generation, plot orientation estimation, and plot 
refinement tasks. A flowchart of the proposed plot extraction framework is shown in Fig. 2. 
Section "SAM segmentation and mask filtering" details the SAM segmentation process and 
the subsequent filtering of the produced masks. Section "Plot orientation estimation and the 
image rotation" explains the methodology for estimating plot orientation and performing 
image rotation to enhance segmentation accuracy. Section "Plot generation and refinement" 
outlines the techniques for plot generation and refinement employed in this study. Finally, 
Sect. "Experiments description" presents the evaluation methods and metrics used to assess 
the framework’s performance.

SAM segmentation and mask filtering

A key distinction between plot extraction and boundary delineation is that accurately delin-
eating the exact perimeters of a plot’s canopy may not be essential for quantifying phe-
notypic traits (Khan & Miklavcic,  2019). Instead, phenotypic assessments can be more 
effectively conducted by calculating canopy coverage within a predefined constant plot 
dimension. In this context, the mechanized research field trials are presumed to be sys-
tematically organized with predetermined specifications, such as the number of rows and 
columns and the plot’s dimensions. Assuming that this information has already been identi-
fied, the hyperparameters of the SAM automatic mask generator can be configured for each 
specific plot extraction scenario. Several hyperparameters can be configured, namely points 
per side, predicted IoU threshold, and stability score threshold. The mask generation process 
is controlled by several hyperparameters, including points per side, predicted IoU threshold, 
and stability score threshold. It begins by establishing a regular grid that serves as a prompt 
for zero-shot transfer. This grid is defined by the ’points per side’ parameter. Increasing this 

Fig. 2  Flowchart of the proposed plot extraction framework. The methodology consists of three main 
steps: mask generation, plot orientation estimation, and plot refinement
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parameter can yield masks at a finer scale but comes at the cost of greater computational 
expense. Once the mask is generated, a filtering process follows, which involves evaluat-
ing the predicted IoU and stability scores. By setting thresholds for these parameters, only 
masks that are confident and stable are retained as final segmented masks. It is anticipated 
that increasing the number of points per side will enhance the accuracy of the segmentation 
results; however, this improvement comes at the expense of increased computational costs. 
The size of the image array is adjusted to streamline processing efficiency while maintain-
ing the quality of the segmentation results. The model architecture remained unaltered, and 
the standard SAM was employed to infer segmentation masks using the pre-trained ViT-H 
model. Unlike conventional deep learning models that require dataset-specific training and 
fine-tuning, SAM operates in a zero-shot manner, meaning it can generalize to new images 
without additional training. By leveraging its pre-trained capabilities, SAM enables robust 
segmentation across diverse field conditions, eliminating the need to collect training samples 
or manually annotate large-scale datasets. This makes it particularly suitable for agricultural 
field trials, where variability in plot structure, crop type, and environmental conditions often 
makes manual labeling impractical. Comprehensive information on the model architecture 
along with experimental setup is available in the relevant documentation (Kirillov et al., 
2023). Following mask generation, the initial output often includes unwanted masks that do 
not correspond to actual plots. At the mask filtering stage, these masks can be filtered out 
based on the dimensions of the plots. This step allows us to identify approximately the initial 
plot candidates. The sample outputs of the SAM segmentation and mask filtering stage are 
presented in Fig. 3.

Plot orientation estimation and the image rotation

Since the plot generation is based on the centroid of the mask, width, and height of the plot 
cell, planting orientation should be estimated to get accurate boundaries. Furthermore, the 
performance of segmentation can decline when the field trials are not aligned with a strict 
grid pattern due to the nature of SAM’s prompt segmentation. To tackle this challenge, this 
section outlines a method for estimating the plot orientation of the entire research field tri-
als. Figure 4 illustrates an example of the plot orientation estimation and the image rotation 
process. The method begins with edge detection applied to the initial mask generated during 
the segmentation stage. These detected edges are then processed using the Hough Trans-

Fig. 3  Sample segmentation results produced by the SAM model. (Left) Original RGB image, (Center) 
Random color-coded output masks, and (Right) Filtered masks retained based on plot dimensions (Color 
figure online)
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form to extract dominant lines, which are identified based on their frequency of occurrence. 
The dominant lines identified based on the highest frequency of occurrence are utilized 
to estimate the plot orientation. Finally, the image is rotated perpendicularly to the x- and 
y-axes according to the estimated orientation. This iterative process continues until the rota-
tion angle converges to 0 or 90 degrees, ensuring proper alignment of the field trials for 
optimized segmentation and plot extraction

Plot generation and refinement

The plot refinement stage consists of polygon generation, grid filling, and grid removal. 
Masks filtered based on plot dimensions during segmentation and mask filtering serve as the 
foundation for defining plot entities. The centroid of these masks is used to generate a fixed-
size plot polygon. Initially, the centroid of each plot is determined, followed by the creation 
of plot polygons, defined by the predetermined width and height of the plot. An illustration 
of the plot generation process is shown in Fig. 5.

To increase the overall accuracy of plot extraction results, the refinement process is fol-
lowed by conducting grid filling and grid removal. In this process, with the initial plots 
generated, the horizontal and vertical spacings between plots are approximated by analyzing 
the spacing between adjacent plot centroids, with the most commonly occurring distances 
adopted as the nominal horizontal and vertical spacings. This is achieved by organizing the 
plot centroids in both ascending and descending orders along the x and y axes, respectively. 
Subsequently, a regular grid is established using the number of rows and columns, vertical 
and horizontal spacings. A graphical illustration of the plot refinement step is depicted in 
Fig. 6. Refinement is conducted by calculating the distances between the centroids of near-
est neighbor plots (d1 in Fig. 6) and the grid points (d2 in Fig. 6).

Fig. 4  Illustration of the plot orientation estimation and image rotation process. a RGB image, b Seg-
mented masks, c Filtered masks, d Detected edges, e Extracted lines based on the Hough Transform, and 
f Rotated image after alignment correction
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Grid filling occurs when the distance d1, the distance from a given regular grid point 
to the nearest plot centroid, exceeds a predefined threshold. These grid points then serve 
as"point prompts"that act as the foreground in the SAM segmentation process. From the 
segmented mask, the initial step involves calculating the area of the mask. If this area falls 
within the range of a predefined threshold around the fixed area designated for a plot, it is 
considered valid for a new plot. Subsequently, a plot cell is created based on these dimen-
sions and added to the existing collection of plots. This process ensures that only the objects 
that match the expected size and dimensions of plots are recognized and incorporated, 
enhancing the accuracy of the grid filling process. Figure 7a, b, and c illustrates the grid 
filling process, showcasing how each step contributes to grid filling during the plot refine-
ment stage.

The subsequent phase is grid removal, which involves the deletion of duplicated plots 
and the commission error. For each plot centroid, if the distance d2 is smaller than a speci-
fied threshold, grid removal is executed. This process is designed to eliminate redundancies 
by identifying and removing plots that are too close together, as they are considered dupli-
cates. Furthermore, this process can reduce the commission error, removing incorrectly 
identified objects by examining Canopeo coverage (Patrignani & Ochsner, 2015). Figure 7d, 
e, and f display examples of the grid removal process, illustrating how duplicated plots can 
be removed. If the distance d2, the distance between the nearest plot centroids, falls within 
the predefined threshold, both the plot at the centroid and the corresponding plot at distance 

Fig. 6  Plot refinement process using grid-based distance calculations. The figure demonstrates how spac-
ing between plots and regular grid structures is used to refine plot positioning

 

Fig. 5  Illustration of the plot generation process. (Left) Mask array obtained from segmentation, (Center) 
Extracted plot boundaries and centroids, and (Right) Final plot polygons with fixed dimensions
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d2 are flagged as duplicates and subject to removal. These flagged plots can be removed 
based on Canopeo coverage, to determine which plot has been extracted more accurately. 
The underlying rationale for this approach is that Canopeo serves as a representative metric 
for various vegetation indices and exhibits a strong correlation with a wide spectrum of 
phenotypic traits. The equation to extract a canopy cover is defined as follows:

	 Canopeo = (R/G < T1) ∧ (B/G < T2) ∧ (2 × G − R − B > T3)� (1)

where R, G, and B are the red, green, and blue bands, and Ts are the threshold. As presented 
in Patrignani and Ochsner (2015), threshold values were set to default values of 0.95, 0.95, 
and 20, respectively. Figure 8 shows an example of extracted Canopeo using red, green, and 
blue bands.

Upon extracting the Canopeo data, the Canopeo coverage rate can be determined by cal-
culating the ratio of Canopeo pixels to the total pixels within each plot. The Canopeo cover-
ages for duplicate plot candidates are computed. Among plots that are deemed duplicates of 
each other, only the plot exhibiting the highest Canopeo coverage is retained. After the plot 
refinement, the coordinate system of the final outcome is transformed into map coordinates, 
resulting in the generation of the final plot boundaries.

The pseudocode for the plot refinement is presented in Algorithm 1. Before initiating plot 
refinement, two k-d trees are constructed to accelerate the k-nearest neighbor search: one for 
the regular grid and plot centroids and another for distances among plot centroids. The ini-

Fig. 7  Examples of the plot refinement process. a Initial plot centroids (red) and regular grid (yellow), 
b Initial plot cells, c Plots after grid filling, d Duplicated plot centroids (random color-coded), e Dupli-
cated plot cells, f Plots after grid removal (Color figure online)
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tial phase, grid filling, aims to identify and rectify omissions from the segmentation phase. 
Subsequently, the second phase, grid removal, aims to identify and eliminate commission 
errors that may arise from both the segmentation and grid-filling phases.

Algorithm 1  Pseudocode for the plot refinement

Experiments description

All experiments were conducted using consistent parameter settings, with image resizing as 
the only variable. The SAM parameters were defined as follows: points per side = 100, sta-
bility score threshold = 0.92, and prediction IoU threshold = 0.86. Image dimensions were 
adjusted to 1024 × 2048 or 2048 × 1024, depending on the field’s aspect ratio. The dis-
tance thresholds Td1 , Td2  and TA were uniformly set to 1. Table 2 shows parameter settings 
used in the experiments. The computational efficiency of SAM segmentation was highly 
dependent on the selected resizing ratio, which directly influenced segmentation accuracy. 
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The default ViT-H model was used as the pre-trained checkpoint, with no transfer learning 
or fine-tuning applied. The inference relied exclusively on the pre-trained weights, dem-
onstrating the generalization capability of SAM across various test sites without requiring 
training samples for executing the proposed framework.

Evaluation

Two approaches were used for the performance evaluation: pixel-based and polygon-based 
evaluation. For pixel-based evaluation, the performance of the proposed framework was 
measured by evaluating the generated plots on manually digitized ground-reference plots. 
Intersection over Union (IoU) is reported, as this metric is widely used in segmentation 
tasks, quantifying the extent of overlap between the predicted segmentation and the actual 
ground reference (Eq. 2). For both evaluation cases, precision, recall, and F-1 score are 
reported to quantitatively evaluate the plot extraction result (Eqs. 3 to 5). In the case of 
pixel-based evaluation, true positive (TP) refers to pixels that correctly overlap with the 
ground reference area. Conversely, a false positive (FP) denotes pixels that are predicted 
outside the actual ground reference, while a false negative (FN) indicates pixels within the 
ground reference area that were not covered by the predicted plot. Additionally, a polygon-
based precision-recall evaluation was introduced to assess the accuracy of boundary delin-
eation. This evaluation was conducted by calculating precision, recall, and F1-score for the 
extracted plot polygons against manually digitized ground-reference polygons. A detected 
plot was considered a true positive if its IoU with the corresponding ground reference poly-
gon exceeded a specified threshold; otherwise, it was classified as a false positive. To pro-
vide a more comprehensive evaluation, precision, recall, and F1-score were also computed 

Table 2  Experimental parameter settings for the SAM-based plot extraction framework
Parameters Points per side Stability score

threshold
Prediction IoU
threshold

Td1 ( m) Td2 ( m) TA( m)

Value 100 0.92 0.86 1 1 1

Fig. 8  Canopeo-based canopy coverage extraction. (Left) RGB image, (Right) Extracted Canopeo cover-
age. Green pixels indicate detected canopy, while yellow pixels represent non-canopy areas (Color figure 
online)
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across multiple IoU thresholds from 50% to 95% (in 5% increments), denoted as P@50–95. 
This approach enables a more nuanced assessment of segmentation accuracy by consider-
ing how well the framework performs at varying levels of overlap. This method provides 
an interpretable assessment of how well the proposed framework captures plot boundaries, 
particularly in scenarios where minor segmentation deviations may still result in function-
ally correct detections.

	
IoU = TP

TP + FP + FN
� (2)

	
Precision = TP

TP + FP
� (3)

	
Recall = TP

TP + FN
� (4)

	
F1 − score = 2 × Precision × Recall

Precision + Recall
� (5)

Results and discussion

This section details the performance of the proposed plot extraction framework and includes 
a discussion of the results. For Dataset W-I and W-IV, the plot orientation was found to 
be approximately 0 degrees, negating the need for image rotation. In contrast, Datasets 
W-II, W-III, and W-V exhibited rotations of approximately 1◦, 1◦, and 25◦, respectively. 
These datasets required image rotation based on the estimated plot orientation before further 
processing.

Performance of the plot extraction

Figure 9 displays the RGB images, Canopeo data, segmented masks, filtered masks, final 
plots, Canopeo, and Canopeo coverage for all datasets. The results indicate that SAM effec-
tively segmented individual plots, as evidenced by the segmented and filtered masks. In 
Dataset W-I, certain background regions were indistinguishable in the RGB image, and this 
ambiguity persisted even in the Canopeo data. Nonetheless, segmentation performance was 
outstanding, with the filtered masks successfully identifying almost all the plots in the field. 
Similarly, Dataset W-III showed that Canopeo failed to detect the plot areas, but the segmen-
tation results were impressively accurate. Notably, these results were achieved using only 
a pre-trained model, highlighting SAM’s remarkable zero-shot capabilities across diverse 
field conditions. Furthermore, although Canopeo struggled to accurately detect plots with its 
default parameters, the proposed framework successfully extracted plots, demonstrating its 
superior performance over vegetation index-based methods for plot extraction.

Utilizing the filtered masks shown in Fig.  9c, a plot refinement process is applied to 
generate the final plot boundaries. Figure 10 provides a zoomed-in view of the plot extrac-
tion results across all datasets. The red boxes highlight the extracted plots, while the yellow 
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boxes represent manually digitized ground references, offering a comparative assessment 
of the framework’s accuracy and precision. Overall, the plots extracted using the proposed 
framework closely match the ground reference, affirming that the proposed framework 
is capable of accurately identifying nearly all plots across different datasets. The minor 
misalignments observed in Dataset W-III are likely due to inherent limitations of manual 
digitization, where human error can become significant given the large number of plots 
requiring digitization. This fact also highlights that given the considerable number of plots 
that required digitization, the potential for human error can be significant. Despite these 
challenges, the consistency of results across all datasets validates the effectiveness of the 
proposed framework, demonstrating the framework could precisely determine individual 
plot locations and delineate plot boundaries under a wide range of conditions. Furthermore, 
the framework’s robustness in handling variations in plot dimensions, orientations, and 
diverse field patterns underscores its utility in high-throughput phenotyping, facilitating 
precise and efficient agricultural research.

Table 3 presents the average processing time required to extract plots across different 
datasets, providing insights into the computational efficiency of the proposed framework. 
The results demonstrate the framework’s feasibility for large-scale high-throughput pheno-
typing, though variations in runtime suggest that field size, plot density, and computational 
resources influence overall efficiency. While the framework performs efficiently under cur-
rent settings, further optimizations, such as parallel processing or adaptive resolution strate-

Fig. 9  Subset of experimental results from the five datasets. The figure displays RGB images, Canopeo 
data, segmented masks, filtered masks, final extracted plots, and Canopeo coverage
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gies, could enhance computational performance, making it more suitable for large-scale 
agricultural applications.

For the quantitative assessment, the metrics outlined in Sect. "Experiments description" 
are reported in Table 4. The accuracy results from both pixel-based and polygon-based 
evaluations exhibit consistency, indicating that the framework maintains stable performance 
across varying field conditions. The polygon-based evaluation, in particular, highlights the 
framework’s suitability for plot extraction, as evidenced by its high accuracy. Despite Data-
set W-III demonstrating a lower accuracy in the pixel-based evaluation, the polygon-based 
evaluation underscores the success of the plot extraction process. The observed discrepan-
cies in alignment with the ground reference in Dataset W-III warrant further analysis. The 
next section examines these alignment issues in detail to better understand the factors affect-
ing plot extraction accuracy and identify potential areas for improvement.

Regression analysis of Canopeo coverage

Despite the overall high accuracy of the proposed framework, Dataset W-III exhibited lower 
accuracy compared to the other datasets, primarily due to misalignment with the ground 
reference. Similarly, Dataset W-V showed a slightly higher Canopeo coverage in the ground 
reference plots compared to the estimated plots. This minor discrepancy is likely due to the 
tilted nature of the field, where image rotation was not perfectly aligned, introducing small 
deviations in segmentation accuracy. To further assess the accuracy of the plot extraction 

Fig. 10  Comparison of extracted plots and manually digitized ground reference plots. (Red) Extracted 
plot boundaries, (Yellow) Ground reference plots. The close alignment between the extracted and refer-
ence plots validates the accuracy of the proposed framework (Color figure online)
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process, a regression analysis was conducted to compare the Canopeo coverage within the 
estimated plots and the ground reference plots. The regression results, presented in Fig. 11, 
demonstrate a clear correlation between the estimated and ground reference plot Canopeo 
coverage.

Notably, the analysis indicated that, in most cases, the Canopeo coverage within the 
estimated plots was consistently higher than in the ground reference plots. The histogram 
distribution of the differences in Canopeo coverage supports this observation, suggesting 
that the proposed framework may provide a more precise estimation of plot coverage than 
initially inferred from pixel-based evaluation metrics alone. However, for Dataset W-V, the 
ground reference plots exhibited slightly higher Canopeo coverage, likely due to the field’s 
tilt affecting the rotation process, leading to minor segmentation misalignments.

This outcome is particularly significant considering the close association between phe-
notypic traits and vegetation indices. The framework’s ability to delineate plot boundaries 
with greater accuracy suggests that it can provide more reliable and valuable information 
for assessing phenotypic characteristics. Thus, even in cases where pixel-based evaluations 
suggest lower accuracy, the framework’s performance in accurately capturing Canopeo 
coverage highlights its effectiveness and potential utility in agricultural research, offering 
insights crucial for the accurate evaluation of plant phenotypes.

Limitations and future work

While the proposed framework has demonstrated robust performance in various field condi-
tions, several limitations remain. First, the current approach has only been tested on fields 
with regular grid patterns, limiting its applicability to more complex or irregularly struc-
tured agricultural plots. Additionally, the framework has primarily been evaluated on wheat 
crop datasets, and its generalizability to other crop types remains unverified. Furthermore, 
variations in growth stages, represented by different days after planting, have not been 
extensively explored, leaving uncertainties regarding its adaptability to diverse phenotypic 
conditions.

Table 4  Evaluation of the proposed plot extraction framework using pixel-based and polygon-based metrics
Dataset Pixel-based Polygon-based@50 Polygon-based@50–95

IoU (%) Preci-
sion 
(%)

Recall 
(%)

F-1 
(%)

Precision 
(%)

Recall 
(%)

F-1 
(%)

Precision 
(%)

Recall 
(%)

F-1 
(%)

W-I 87.68 93.51 93.36 93.43 100 99.82 99.91 80.81 80.67 80.74
W-II 86.47 93.99 90.41 92.16 100 100 100 76.14 76.14 76.14
W-III 65.81 79.62 79.15 79.38 98.51 98.75 98.63 37.76 37.86 37.81
W-IV 90.19 94.84 94.84 94.84 100 100 100 85.55 85.55 85.55
W-V 78.38 90.68 85.24 87.88 100 100 100 62.31 62.31 62.31
Average 81.71 90.53 88.60 89.54 99.70 99.71 99.71 68.51 68.51 68.51

Dataset
Metric W-I W-II W-III W-IV W-V
Processing time (sec) 82.8 85.5 100.9 84.29 48.8

Table 3  Average processing time 
(in seconds) required for plot 
extraction across the five datasets
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Fig. 11  Regression analysis of Canopeo coverage. (Left) Scatter plot showing the correlation between es-
timated and ground reference Canopeo coverage. (Right) Histogram illustrating the difference in Canopeo 
coverage between extracted plots and ground reference plots
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Another key limitation is the computational cost associated with SAM-based segmenta-
tion. The framework’s reliance on SAM increases the demand for processing power, partic-
ularly when handling large-scale fields with high-resolution imagery. This dependency may 
hinder its practical application in real-time or resource-constrained environments. Future 
research should focus on optimizing the segmentation process to improve computational 
efficiency without compromising accuracy. Potential directions include reducing memory 
overhead, implementing adaptive resolution strategies, and integrating lightweight models 
tailored for agricultural plot extraction.

To address these limitations, future work will explore (i) applying the proposed frame-
work to field trials involving various crop types to assess its versatility, (ii) extending its 
applicability to fields with irregular layouts, (iii) evaluating performance across different 
growth stages to ensure robustness over the entire phenotypic cycle, and (iv) developing 
computational optimizations to enhance efficiency in large-scale agricultural applications. 
These improvements will contribute to refining the framework’s scalability and usability, 
ultimately advancing high-throughput phenotyping and precision agriculture.

Conclusions

This study presents a Segment Anything Model (SAM)-based automated plot extraction 
framework, addressing the limitations of manual digitization methods commonly used in 
agronomic research field trials. By leveraging zero-shot segmentation, the framework elim-
inates the need for model training while ensuring high accuracy and adaptability across 
diverse field conditions. The method was validated using five datasets, demonstrating its 
effectiveness in extracting plot boundaries with an average F1 score of 89.54% in pixel-
based evaluation. The polygon-based evaluation further confirmed its robustness, achieving 
99.71% precision at IoU=50% and 68.51% precision across IoU thresholds from 50 to 95%. 
Additionally, a Canopeo-based regression analysis implied that the extracted plots provide 
more reliable phenotypic estimates than manually digitized ground reference data, under-
scoring the framework’s practical applicability in high-throughput phenotyping.

The key contribution of this study lies in its ability to provide a fully automated and scal-
able solution for plot extraction, significantly reducing the labor-intensive nature of manual 
methods. Unlike existing approaches, the proposed framework operates solely on RGB 
imagery without requiring fine-tuning, making it highly accessible and adaptable to large-
scale agricultural applications. Its robustness across varying field conditions demonstrates 
its potential for enhancing the accuracy and efficiency of agronomic research. Furthermore, 
the integration of Canopeo-based analysis highlights its capability to provide more precise 
vegetation coverage estimates, which is essential for phenotypic assessments and precision 
agriculture.

Despite its strong performance, some limitations remain. The framework has been pri-
marily tested on regular grid-patterned wheat fields, and its applicability to irregular lay-
outs and different crop types warrants further exploration. Additionally, computational costs 
associated with SAM segmentation may pose challenges for real-time applications in large-
scale field trials. Future work will focus on expanding the framework to irregular plot struc-
tures and diverse crop types, evaluating its robustness across different phenotypic growth 
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stages, and optimizing computational efficiency for deployment in resource-constrained 
environments.
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