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Abstract: Rising food demands require new techniques to achieve higher genetic gains for crop
production, especially in regions where climate can negatively affect agriculture. Wheat is a staple
crop that often encounters this challenge, and ideotype breeding with optimized canopy traits
for grain yield, such as determinate tillering, synchronized flowering, and stay-green (SG), can
potentially improve yield under terminal drought conditions. Among these traits, SG has emerged
as a key factor for improving grain quality and yield by prolonging photosynthetic activity during
reproductive stages. This study aims to highlight the importance of growth dynamics in a wheat
mapping population by using multispectral images obtained from uncrewed aerial vehicles as
a high-throughput phenotyping technique to assess the effectiveness of using such images for
determining correlations between vegetation indices and grain yield, particularly regarding the
SG trait. Results show that the determinate group exhibited a positive correlation between NDVI
and grain yield, indicating the effectiveness of these traits in yield improvement. In contrast, the
indeterminate group, characterized by excessive vegetative growth, showed no significant NDVI–
grain yield relationship, suggesting that NDVI values in this group were influenced by sterile tillers
rather than contributing to yield. These findings provide valuable insights for crop breeders by
offering a non-destructive approach to enhancing genetic gains through the improved selection of
resilient wheat genotypes.

Keywords: remote sensing; UAV-based phenotyping; multispectral imagery; wheat morphology;
stay-green; VI data analytics; modern wheat model

1. Introduction

Modern agriculture faces substantial productivity threats due to climate change, land
and water availability, and—most importantly—increasing demand [1]. The recent pan-
demic has highlighted the vulnerability of developing nations to these problems, as inade-
quate global planning has led to further strains on production in regions already suffering
from heatwaves and droughts [2]. Despite numerous advances in recent years, there per-
sists a need to optimize crop production technologies and genotypic selection to achieve
maximum genetic gain in these growing environments [3]. Thorough, targeted initiatives
and innovative approaches are necessary to achieve greater food security in these regions.
This means utilizing the modern strengths of research and development (R&D) institutions
to improve the selection, adoption, and evaluation of advanced technologies addressing
crop performance.

High-throughput remote sensing, employing platforms such as unmanned aerial
vehicles (UAVs) and satellite imagery, has become increasingly adopted for a wide
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range of vegetation-related applications, including the study of crop phenology, anal-
ysis of biophysical characteristics, and non-destructive examination of root systems
and their connection to the surrounding environment [4,5]. One of the most popu-
lar tools, LiDAR (light detection and ranging), facilitates the laser scanning of trees
and crop plants to create highly accurate 3D structural models [6]. This advanced
technology swiftly assesses the above-ground plant structure, revealing crucial in-
formation such as plant height and physiological arrangement, as well as metrics
related to volume and density [7]. These parameters directly reflect various agronomic
characteristics (particularly those related to crop yield and biomass), offering valuable
insights into the interplay between light and vegetative resources, especially concern-
ing plant tillering and branching patterns [8]. UAVs equipped with high temporal and
spatial resolution multispectral or hyperspectral imaging capabilities can assess crop
health and track growth stages throughout the entire growth period [9]. Similarly, the
ground-penetrating radar (GPR) scanning system provides a non-destructive method
for analyzing below-ground plant systems, offering measurements of root biomass,
length, and density [10].

Bread wheat (Triticum aestivum) displays various forms of morphological traits under
different environmental and natural selection processes [11], with the optimum crop per-
formance being determined by the collective effects of the morphological, physiological,
and genetic features of a plant [12]. The earlier model wheat plant (ideotype) was defined
by features such as determinate and synchronized growth habit, short and strong stem,
high leaf area index, and harvest index [13], with periodic shifts in climatic conditions also
showing additional shifts in plant characteristics, mainly led by thermal requirements for
phenological stages [14]. By contrast, the modern concept of wheat ideotype addresses
avoidance and tolerance in response to abiotic stresses, with flexibility for phenology, im-
proved photosynthesis efficiency, and delayed senescence [15]. Thus, the concept of the
wheat plant model is continuously evolving.

Environmental conditions play a major role in regulating canopy structure devel-
opment, affecting light harvesting potential, flowering synchronicity, and seed setting,
which ultimately determines a plant’s reproductive success [16]. In wheat, synchro-
nized tiller growth ensures uniform development and maturation, a crucial element for
optimizing resource use and enhancing grain production. This process is influenced
both by genetic factors and environmental conditions, such as temperature and photope-
riod [17,18], with this synchronization simplifying the harvesting process and reducing
yield losses. Although a synchronized growth pattern offers significant advantages, it
is essential to consider the potential trade-offs. For instance, although this trait pro-
motes uniformity, its correlation with improved grain yield and quality needs further
investigation. Thus, additional desirable traits to achieve synchrony before the onset of
reproductive stages, such as the early termination of vegetative growth, need to be inte-
grated with prolonged photosynthetic activity and delayed leaf senescence to maintain
grain yield.

To effectively identify high-yield plants suitable for specific environments, connect-
ing genotype (genetic makeup) and phenotype (observable traits) is crucial [19]. The
structural and physiological characteristics of plants have been observed to directly in-
fluence their ability to capture resources in short-duration cereals and other species [20].
Alterations to these traits have demonstrated enhanced light penetration, carbon assim-
ilation, and significant effects on overall crop yield [21]; however, our understanding
of the genetics influencing growth, yield, and stress adaptation has been limited by the
absence of advanced phenotyping tools—methods that enable high-throughput, precise,
and non-invasive assessments of plant traits across multiple environmental conditions.
Traditional methods, reliant on visual assessments, introduce biases and inaccuracies that
hinder a comprehensive analysis of these traits [22]. Although advanced phenotyping
techniques, such as the use of multispectral images captured by UAVs, provide a remote,
non-destructive means to measure plant systems with a high degree of accuracy and
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resolution across varying environmental conditions, they still face limitations, particu-
larly regarding temporal resolution. Such limitations have proven especially challenging
for studying traits such as stay-green (SG), which is critical for improving drought re-
silience. Despite its significance, the inability to monitor phenotypic traits throughout
all growth stages has hindered a full understanding and optimization of SG’s impact on
crop performance.

Given the power of robust and efficient phenotyping techniques, a determinate-
tillered genotype with the SG trait holds great promise as a valuable selection target
in crop improvement programs, especially in the context of environmental stresses
like drought, as a longer photosynthesis duration during reproductive stages offers
higher grain yield due to more photosynthetic tissue availability for further assimilation.
Under terminal drought conditions, the SG genotypes have shown improved grain
yield compared to non-SG types [23]. Even so, while research on drought in wheat
has been extensive, understanding the SG type has progressed slowly. In previous
studies, quantitative trait loci (QTLs) for plant architectural traits such as plant height
and root number were found to be correlated with QTLs for SG traits [24]. Various
studies have also identified differing numbers of genetic markers linked to SG traits in
wheat, with the discrepancies being linked to inefficient phenotyping techniques [25].
Consequently, the challenge of comparing genetic maps in SG lines has persistently
hindered this research [26].

The objective of this case study is to employ multispectral imagery acquired through
UAVs to monitor vegetation index (VI) patterns throughout the entire growth season,
with a particular focus on reproductive stages. This method provides non-destructive,
high-resolution phenotyping for monitoring key traits like photosynthetic duration in
SG genotypes, which have shown higher grain yield under drought conditions due
to extended photosynthetic activity during reproductive stages. By applying this ap-
proach, we expect the VIs obtained from this imagery to effectively identify plants in a
mapping population that have extended photosynthesis activity during the flowering
and post-flowering stages, thereby providing a viable, precise, and scalable method of
identifying SG traits in wheat, further bridging the existing gaps in genetic–phenotypic
linkage studies.

2. Materials and Methods
2.1. Plant Material and Study Site

The study was conducted in 2016 at the Texas A&M AgriLife Research and Extension
Center in Nueces County, Texas, on the border of the Gulf Coast and coastal saline prairies
(at an elevation of approximately 16 m) (Figure 1). The region is humid subtropical (Cfa)—
receiving, on average, 34–38 inches of rainfall annually (NOAA)—with soil composition
consisting primarily of Victoria (VcA) clay (43.8%), with Orelia (Of) fine sandy loam
(4.7%), Raymondville (CcA) complex (4.5%), and Galveston/Mustang (Gm) fine sands
(3%) also being notable components (USDA-NRCS). The experiment was carried out on a
field containing a wheat mapping population consisting of 180 recombinant inbred lines
(RILS) developed from a cross between the heat-tolerant ‘Halberd’ and the moderately
heat-susceptible ‘Len’ cultivars, planted in two replications across an alpha lattice layout,
creating a total of 364 individual plots. Figure 2 illustrates the climatic conditions at the
study site, highlighting a pattern of progressively increasing precipitation throughout the
growing period.
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Figure 2. Temperature and precipitation pattern throughout the growing period.

2.2. Field Trait Measurements

Phenological stage: To define the phenological stage, the number of days to heading
(50% of plants exhibiting heading out), flowering (50% exhibiting pollinated spikes), and
physiological maturity (50% of spikes in a plot showing diminished greenness) were
recorded using the method described by Zadocks et al. (1974) [27,28].

Tillering and flowering patterns: To monitor plant growth, data were recorded for tiller
height within the plant as well as for the phase of tiller formation relevant to the vegetative
and reproductive stage. The tiller length distribution for each RIL within a specific area
was compared following the method used by Jia et al., (2015) [29]. Utilizing visual scoring,
plants were categorized into two groups based on their vegetative and reproductive growth
completion. Determinate plants displayed consistent and synchronized flowering and
tillering. In contrast, indeterminate plants exhibited non-uniform tillering and flowering
(Figures 3A and 4). In our study, SG types were only compared with non-SG within the
determinate group. This was the crucial step, as these indeterminate plants, although ex-
hibiting prolonged high NDVI values due to extensive vegetative growth, do not contribute
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to increased yield due to their lack of photosynthetic competence compared to determinate
types (Figure 3B).
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Figure 3. (A). Indeterminate plants display non-uniform tillers and asynchronized flowering, whereas
determinate plants show uniform tillers and flowering. (B). Stay-green (SG) plants have a longer
grain-filling period and delayed senescence compared to Non-SG.
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Stay-green phenotype: Among the determinate group, SG lines were identified based
on their flowering time, rate and duration of leaf senescence, and physiological maturity.
These lines demonstrated a delayed or slower onset of leaf senescence, resulting in a greener
appearance and prolonged photosynthetic activity (validated through higher grain yield)
compared to non-SG plants (Figure 3B).

2.3. Image Acquisition and Processing

Multispectral fine spatial resolution RGB and NIR images were acquired throughout
the growing period using a UAV flying at an altitude of 30 m (Figure 5). In total, eight
separate images of the entire study area were captured, one for each period beginning
with early vegetation and ending at maturity. For the RGB data collection, the Canon S110
camera was integrated with the 3DR Iris + UAV platform. For multispectral data collection,
the TetraCam ADC Snap sensor (Tetracam Inc. Chatsworth, CA, USA) was integrated into
the 3DR X8 + UAV platform. We used Mission Planner software to design autonomous
flights. The multispectral sensor used in the study ensured motion blur-free image capture,
as the sensor has an electronic global snap shutter. Sensor specifications can be found
in Table 1. The multispectral sensor captured false-color images in the green, red, and
NIR regions equivalent to Landsat Thematic Mapper bands TM2 (green), TM3 (red), and
TM4 (NIR), respectively. Additionally, color images were obtained using bands in the red,
green, and blue regions of the visible spectrum. We further processed raw images collected
by RGB and multispectral sensors using Agisoft Metashape 1.3 (https://agisoft.com) to
generate geospatial data products such as orthomosaic images and digital surface models
(DSMs). During the structure-from-motion (SfM) process, we utilized five ground control
points (GCPs) to ensure good geometric alignments among multi-temporal flights. The
GCPs were surveyed using a survey-grade GPS.

https://agisoft.com
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Table 1. Ground resolution and view of field for images gathered at various altitudes above ground (a),
sensor and lens parameters (b).

Object Distance (Altitude above Ground Level) Grand Resolution (mm per Pixel)

(a)
122 m 72.36

213.4 m 126.54

365.8 m 216.91

(b)
Sensor Dimention 6.59 × 4.9 mm

Pixel Size 5 micron

Camera Lens Focal Length 8.43 mm

A radiometric correction process was performed to convert the recorded digital num-
bers (DNs) of the orthomosaic images into reflectance values. In this case, four calibration
targets with known reflectivity (3, 12, 33, and 56%) were placed within the flight path of a
UAV platform. During image acquisition, a laboratory spectrophotometer (Perkin-Elmer
Lambda 1050) was used to calculate the reflectance of the calibration targets and selected
vegetation and soil samples. The ASD field spectrophotometer was calibrated using a
Spectralon reflectance standard.

Radiometric calibration was performed using ENVI 5.3. software to extract reflectance
values from the field plots, enabling the derivation of biophysical vegetation parameters
(NDVI and GNDVI). The broadband spectral reflectance data from the UAV images were
utilized to calculate vegetation indices for each plot, representing individual RILs (Figure 6).
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3. Results and Analysis
3.1. Growth and Flowering Characteristics—Field Observations

Table 2 presents the distribution of RILs categorized as determinate or indeterminate
based on tiller length range and illustrates the proportion of vegetative and reproductive
phases. Determinate lines exhibited synchronized flowering time and consistent tiller distri-
bution, while indeterminate lines displayed greater variation in both features. Based on the
refined selection criteria for SG types mentioned in the Methods Section and consideration
for plant ideotype and the timing of greenness loss in the post-flowering stage, 14 plots
were identified as SG types.

Table 2. Distribution of RILs by flowering time (50% head emergence at anthesis after planting) and
tiller distribution (cm).

No of RILS Flowering Time (Days) Tiller Length (cm)

Determinate 88 65–70 12–15

Indeterminate 94 70–75 25–35

The tillering pattern and SG trait in wheat are important determinants of yield, par-
ticularly under stress conditions, which significantly affect the plant’s overall biomass
and root-to-shoot ratio. The tin gene involved in tillering inhibition reduces the number
of tillers but promotes root growth and enhanced water uptake. This genotype exhibits
traits like slow water use, cool canopy temperature, and sustained green leaf area during
the grain-filling stage. Reduced tillering has been found to provide a yield advantage
in water-limited environments by optimizing resource allocation, reducing competition
among tillers, and increasing both the harvest index and grain yield [30].

In the current study, despite the unfavorable weather conditions at the late reproduc-
tive stage, the SG lines were highly tolerant of environmental effects; in particular, lodging
resistance was seen under heavy rainfall conditions. Previous studies have reported that
cereal plant height is positively linked to lodging [31], whereas increased root-to-shoot
ratio, root biomass, root depth, and early stem elongation were reported to be associated
with the tin gene containing near-isogenic lines [32]. Comprehensive studies on the relation-
ship between above-ground and below-ground plant systems in SG lines for overall plant
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performance in different environmental conditions need to be conducted by employing
high-throughput phenotyping techniques.

Flowering synchrony is a crucial trait for yield optimization and efficient harvesting.
Flowering synchronization is regulated by three major genetics systems in wheat—vernalization,
photoperiodism, and earliness offer wheat’s genetic potential to be fine-tuned by their
exploitation [33]. Moreover, this flowering uniformity is particularly important under
abiotic stress conditions where crops mature during increasing temperatures following an
avoidance mechanism [34]. This strategy helps plants maximize yield by preventing the
detrimental effects of frost and heat on reproductive developmental stages. Genetic studies
have shown that earlier headings and delayed physiological maturity with prolonged
grain-filling periods (SG traits) result in higher grain protein content, while overall grain
yield can vary depending on environmental conditions [35]. Flowering synchrony and
an extended grain-filling period could be important selection targets in crop breeding
programs for improving grain yield and quality.

3.2. Association among Morphological Features Agronomic Traits and Spectral Reflectance

The observed patterns in vegetation indices among different plant groups, categorized
by determinate versus indeterminate growth types and SG versus non-SG attributes at
specific growth stages (Figure 7), can be linked to the underlying physiological and mor-
phological inherent differences in these groups. During the flowering-to-booting period,
the field exhibited the highest overall NDVI values, particularly in determinate plants.
The elevation in NDVI values during this stage could be linked to the increased photo-
synthetic activity and canopy development characteristic of determinate plants during
their reproductive phase. Interestingly, the divergence in NDVI patterns between determi-
nate and indeterminate groups was initially subtle at the leaf sheath and flag leaf stages,
with determinate types displaying slightly higher values. However, as the growth stages
progressed, the distinctions became more pronounced, especially during the heading to
flowering stages.
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These variations likely reflect differences in growth dynamics, canopy structure, and
physiological processes between determinate and indeterminate plants. A notable distinc-
tion was seen during the early- and late-stage clustering of NDVI and GNDVI for grain
yield in both determinate and indeterminate categories (Figure 8). This finding suggests
that these indices effectively capture the dynamics associated with senescence and canopy
greenness during the critical phase of the plant’s life cycle.
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Figure 8. Cluster analysis of NDVI and GNDVI at different growth stages, and their relationship
with grain yield (kg/acre) for determinate (D) and indeterminate (I) growth patterns in the overall
RILs mapping population.

The violin plot (Figure 9) compares grain yield distributions between determinate and
indeterminate plant types. The determinate group shows a wider spread and higher peak
densities of around 400–600 kg/acre, suggesting a tendency for higher yields, with the
median yield higher than that of the indeterminate group. In contrast, the indeterminate
group has a more concentrated distribution, with values centered around 300–500 kg/acre,
indicating lower overall yield. The interquartile ranges and medians further illustrate that
determinate plants generally outperform indeterminate plants in grain yield.
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In dense canopies, the red to far-red light (R:FR) ratio has been reported to be lower
mainly because of the absorption of R light by leaves and the reflection of FR. This response
to light signifies the competition for resources [36]. Consequently, this competition for
resources caused by the excessiveness of vegetative growth in major cereal crops could
reduce yield, as most tillers fail to contribute to the final yield. Research on the tiller-
numbering trait in cereal crops has recently made significant progress. Yet, developing
crop varieties with an optimal number of tillers to increase yield for a specific environment
needs a holistic approach that studies plant physiology, genetics, and temporal dynamics
in vegetative and reproductive phases.

3.3. How NDVI Changes during Different Growth Stages

NDVI is an important metric for monitoring crop health and development, particularly
during the flowering stage, where NDVI values reach their peak, reflecting the highest
photosynthetic activity and dense canopy cover. During the growth cycle, the NDVI values
follow a low–high–low curve, peaking during the jointing to booting stages, including the
flowering period. This trend is consistent across different wheat cultivars and is influenced
by management practices and environmental factors [37]. Machine learning algorithms,
such as support vector machines and random forest, have developed NDVI-based yield
prediction with moderate-to-high performance during reproductive stages [38,39]. How-
ever, bidirectional reflectance factors and viewing angles also affect NDVI measurements,
with forward-direction NDVI values being higher due to reduced shadow effects [40].

3.4. Association between Grain Yield, Vegetation Indices, and Growth Pattern

Initial statistical tests, including the t-test, one-way ANOVA, and regression analysis, on
the mapping population revealed no significant results for overall grain yield or vegetation
indices (Figure 10). Similar results were found when examining individual groups. The
indeterminate group exhibited no correlation; however, significant differences in grain yield
were found for the determinate group upon further analysis of subsets within the determinate
and indeterminate groups across the minimum-to-maximum grain yield (average) range
(Figure 11). Subsequent correlation analysis for the combined subset (both determinate
and indeterminate) indicated a positive relationship between these traits, especially at late
growth stages (Figure 12). The T-statistic was 2.735, with a corresponding p-value of 0.0072,
indicating statistical significance. In contrast, for the SG and non-SG groups, the statistical
tests for vegetation indices were nonsignificant regarding the relationship to grain yield.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 10. Association plot—No correlation was seen between NDVI for the overall mapping pop-
ulation and grain yield. 

 
Figure 11. Correlation analysis within the subset for grain yield and NDVI in determinate (left) and 
indeterminate (right) groups. 

 
Figure 12. Plants with yield subgroups such as low, medium, and high show a positive correlation 
between overall NDVI and overall grain yield (left). Heat map showing a strong relationship be-
tween NDVI grain yield in subcategorized plants at BT, HD, and GF stages (right). 

Figure 10. Association plot—No correlation was seen between NDVI for the overall mapping
population and grain yield.



Remote Sens. 2024, 16, 3710 11 of 14

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 10. Association plot—No correlation was seen between NDVI for the overall mapping pop-
ulation and grain yield. 

 
Figure 11. Correlation analysis within the subset for grain yield and NDVI in determinate (left) and 
indeterminate (right) groups. 

 
Figure 12. Plants with yield subgroups such as low, medium, and high show a positive correlation 
between overall NDVI and overall grain yield (left). Heat map showing a strong relationship be-
tween NDVI grain yield in subcategorized plants at BT, HD, and GF stages (right). 

Figure 11. Correlation analysis within the subset for grain yield and NDVI in determinate (left) and
indeterminate (right) groups.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 10. Association plot—No correlation was seen between NDVI for the overall mapping pop-
ulation and grain yield. 

 
Figure 11. Correlation analysis within the subset for grain yield and NDVI in determinate (left) and 
indeterminate (right) groups. 

 
Figure 12. Plants with yield subgroups such as low, medium, and high show a positive correlation 
between overall NDVI and overall grain yield (left). Heat map showing a strong relationship be-
tween NDVI grain yield in subcategorized plants at BT, HD, and GF stages (right). 

Figure 12. Plants with yield subgroups such as low, medium, and high show a positive correlation
between overall NDVI and overall grain yield (left). Heat map showing a strong relationship between
NDVI grain yield in subcategorized plants at BT, HD, and GF stages (right).

The inherent features of the canopy, such as the geometry and orientation of leaves
during image capture, introduce biases that affect the precision of metric estimation [41].
In remote sensing studies, it has been observed that during periods of vegetation growth,
especially in dense vegetation canopies, NDVI tends to saturate, resulting in the underesti-
mation of other parameters such as the leaf area index (LAI), crop productivity, and overall
crop performance [42]. Additionally, while there is an association between leaf chlorophyll
content and NDVI, broad band-derived vegetation indices prove more adept at discerning
broad differences than offering detailed information about canopy biophysiological features
such as chlorophyll content and photosynthesis efficiency [43].

This study observed a positive correlation between overall NDVI and grain yield.
However, no correlation was found between grain yield and NDVI during early growth
stages. Notably, positive correlations emerged during the booting, heading, and grain-
filling stages, emphasizing the dynamic nature of the relationship between NDVI and grain
yield at different growth phases (Figure 12). The determinate group performed better for
grain yield as compared to the indeterminate group. Further studies and an improved
understanding of these plant groups’ specific traits and physiological mechanisms can
provide additional insights into the observed variations in NDVI distribution.



Remote Sens. 2024, 16, 3710 12 of 14

4. Conclusions and Future Directions

The implementation of modern technology into agriculture has been steadily increas-
ing, not only in the realm of general plant genetics but also in exploring the specifics of
plant phenomics. Over the past few decades, remote sensing technology has surged in
prominence within plant phenotyping, providing an effective means of dissecting intricate
relationships among genotypes, environments, and cultivation techniques. These methods
are of pivotal importance for precision agriculture, digital farming, and the screening of
the germplasm programs of the future. NDVI and GNDVI, functioning as remote sensing
indices for assessing vegetation health, are important in monitoring phenology, canopy
greenness, senescence, and SG dynamics. The interplay of canopy architecture and cover
significantly influences light distribution and reflectance, serving as the basis for various
vegetation indices. Of these indices, those derived from RGB multispectral images hold
great potential for monitoring phenological stages among plots exhibiting diverse growth
patterns. Specifically, the initiation of senescence within a population highlights the ef-
fectiveness of these indices in capturing subtle changes in plant health and development.
Integrating uncrewed aircraft systems (UASs) with advanced remote sensing technologies,
such as LiDAR, offers a robust alternative to capture accurate and detailed information
on plant structure and morphology, which can overcome the limitations and biases asso-
ciated with NDVI-based methods in diverse canopy patterns. The non-destructive and
high-throughput nature of LiDAR makes it particularly beneficial for assessing canopy
density and crop biophysical properties like height and leaf area index, as it can monitor
both green and non-green plant elements, unlike NDVI, which primarily responds to
chlorophyll content.

The research findings indicate that the determinate group in wheat showed a posi-
tive correlation between NDVI and grain yield, while the indeterminate group lacked a
significant relationship. This suggests that NDVI values in the indeterminate group did not
contribute to grain yield due to sterile tillers. Positive correlations between NDVI and grain
yield were observed during the booting, heading, and grain-filling stages, highlighting the
dynamic nature of this relationship at different growth phases. UAV-based phenotyping
proved effective in studying wheat growth patterns, particularly in identifying SG. These
lines exhibited delayed leaf senescence and prolonged photosynthetic activity, leading to
higher grain yield compared to non-SG plants among the determinate group.

This study highlights the potential that SG trait phenotyping holds for using non-
destructive remote sensing methods for advancing crop improvement and breeding pro-
grams. While the SG trait offers significant advantages in terms of grain yield and envi-
ronmental stress resistance, it is essential to consider the need for its incorporation with
other features such as optimum morphology, including uniform tillers and synchronized
flowering. The development of high-yielding and stress-tolerant cultivars should balance
multiple desirable traits to ensure overall crop performance and adaptability.

Results show that these techniques can provide detailed insights into wheat growth
patterns, which are essential for enhancing the genetic basis of current breeding strategies.
The ability to non-destructively monitor key traits like SG throughout various growth
stages allows for a more accurate and comprehensive evaluation of genetic material, further
allowing breeders to optimize the selection process. This, in turn, facilitates the develop-
ment of wheat genotypes with improved resilience to environmental stresses and increased
grain yield and quality. By integrating these methods into breeding programs, researchers
and breeders can better understand the interactions between above-ground plant archi-
tecture and subterranean root systems, allowing for the cultivation of wheat varieties that
meet the growing demands of the global food market.
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