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Unsupervised surface water mapping with airborne LiDAR data by leveraging 
physical properties of water
Hunsoo Song a,b and Jinha Jung a

aLyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA; bYale School of the Environment, Yale University, New Haven, 
CT, USA

ABSTRACT
Comprehensive mapping of surface water, especially smaller bodies of water (<1 ha), remains challen
ging due to the lack of robust and scalable extraction methods. Traditional methods require the use of 
either training procedures or the repetitive tuning of site-specific parameters, which present hurdles to 
automated mapping and introduce biases tied to training data and parameters. The dependence on 
water’s reflectance properties, including LiDAR intensity, further complicates the issue, as higher- 
resolution images inherently introduce increased noise. In response to these challenges, we propose 
a unique, unsupervised method that focuses on the geometric characteristics of water instead of its 
variable reflectance properties. Unlike existing approaches, our method relies exclusively on 3D 
coordinate observations from airborne LiDAR data, taking advantage of the presumption that con
nected surface water remains flat due to surface tension. Leveraging this physical constraint and spatial 
connectivity, our method precisely extracts water bodies of diverse sizes and reflectance without the 
need for training procedures or intensive parameter tuning. Notably, by relying solely on 3D coordinate 
observations, our approach significantly facilitates the fully automated generation of comprehensive 
3D topographical maps of both water and terrain, eliminating the need for human intervention or 
supplementary optical imagery. We validated the robustness and scalability of this method across 
diverse terrains, including urban, coastal, and mountainous areas. Overall, the proposed method 
achieved a 11% higher accuracy, measured by intersection over union, compared to the highly 
competitive NDWI-based method. Moreover, it proved its effectiveness in both accuracy and scalability 
compared to supervised machine learning and deep learning methods.
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1. Introduction

Surface water mapping in remote sensing provides 
vital insights fundamental to diverse studies. It facil
itates understanding the location, dynamics, and rela
tionship of water with its surroundings, which is 
critical for water resource management (Hoekstra, 
Buurman, and Van Ginkel 2018) and human welfare 
(Sanders et al. 2022). The evolution of remote sensing 
has advanced the quest for a comprehensive surface 
water map, now covering even minor, small water 
bodies. Historically, large water bodies took prece
dence in mapping endeavors (Bijeesh and 
Narasimhamurthy 2020; Ji, Zhang, and Wylie 2009; 
Khandelwal et al. 2017; Pekel et al. 2016), with recent 
emphasis shifting to smaller water entities due to 
their societal relevance and the rise of high- 
resolution imaging (Hoekstra, Buurman, and Van 
Ginkel 2018; Kelly-Quinn et al. 2022; Kyzivat and 
Smith 2023; Xu et al. 2020).

However, high-resolution surface water mapping 
presents challenges. These primarily arise from the 
variability in reflectance of small water bodies in 
such images. This challenge is further compounded 
by the need for multiple image acquisitions to cover 
larger areas, which significantly elevates spectral 
variability (F. Chen et al. 2020a; Ogilvie et al. 2018). 
Addressing these challenges has inspired methods 
integrating multi-temporal data (Pickens et al. 2020), 
sensor fusion (Liu et al. 2022; Tayer et al. 2023), and 
machine learning (Ko, Kim, and Nam 2015; Wang et al.  
2023). Yet, inherent spectral variations in water, influ
enced by acquisition conditions (Martins et al. 2017) 
and surface conditions (Ogilvie et al. 2018), pose 
limitations.

Furthermore, current methodologies largely offer 
only 2D information, whereas understanding water’s 
elevation is essential for various applications (Arrighi 
and Campo 2019; Musa, Popescu, and Mynett 2015). 
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This 3D perspective, possible with LiDAR data, can 
enhance our grasp of water dynamics. Though air
borne laser scanning (ALS) has been utilized for add
ing elevation for water bodies (Moore et al. 2019) and 
holds significant potential, automated surface water 
mapping using ALS is still in nascent stages.

In our research, we present a scalable solution for 
surface water mapping that harnesses topographic 
ALS. By “scalable,”we refer to a method capable of 
delivering consistent and reliable results across a wide 
range of diverse and expansive environments, adapt
ing to both aquatic surfaces and their surrounding 
terrestrial landscapes without the need for site- 
specific parameter adjustments or human interven
tion. Our method introduces a novel water elevation- 
based region merging, leveraging the assumption 
that surface water remains relatively flat. It recognizes 
minimal elevation variations caused by wind or flow 
but considers them negligible compared to changes 
occurring with adjacent terrestrial bodies. It operates 
unsupervised, relying solely on LiDAR’s coordinate 
information. Notably, our method’s unique indepen
dence from training procedures facilitates the auto
matic generation of a comprehensive 3D topographic 
map using only ALS.

2. Related works

2.1. Optical and radar-based water mapping

Water mapping has largely been achieved through 
optical imaging with various satellite missions, offer
ing resolutions from 1-km to 1-m, paving the way for 
decades of Earth’s water body mapping (Khandelwal 
et al. 2017; Pekel et al. 2016). Advancements in ima
ging technology have sparked a surge in mapping 
smaller water bodies over extensive areas (Becker 
et al. 2019; Chen et al. 2020a).

Although high-resolution imagery captures small 
water bodies, large-area mapping of these is more 
intricate than using low-resolution images for vast 
areas. Challenges include varied spectral reflectance 
in smaller bodies (Ogilvie et al. 2018) and disruptions 
like shadows and urban structure occlusions (Yang 
et al. 2018). Moreover, high-resolution imaging 
demands varied methods for different image acquisi
tions (Ji, Zhang, and Wylie 2009).

To counter inaccuracies in high-resolution map
ping, advanced decision rules have emerged. 

Studies have utilized multiple indices to reduce 
urban area errors (Yang et al. 2018) or introduced 
water index roughness (Dong et al. 2022). Data- 
driven techniques, such as machine learning-based 
classifications (e.g. support vector machines (Sun 
et al. 2015) and random forest classifiers (Ko, Kim, 
and Nam 2015)) and deep learning-based semantic 
segmentation methods (Y. Chen et al. 2020b; 
Isikdogan, Bovik, and Passalacqua 2019; Luo, Tong, 
and Hu 2021; Ma et al. 2023; Wieland et al. 2023), 
have been explored. However, sourcing high-quality 
training samples for expansive areas, particularly in 
high-resolution images, is a significant hurdle (Pekel 
et al. 2016; Pickens et al. 2020). Furthermore, the 
variability in water’s optical properties and the data 
distribution shift inherent in machine learning 
approaches complicate the reuse of trained models 
(Tuia, Persello, and Bruzzone 2016; Wieland et al.  
2023).

Radar-based water mapping, combined with opti
cal imagery, is gaining prominence due to its cloud- 
penetrating capabilities (Liu et al. 2022). However, its 
limited high spatial resolution data renders it less 
cost-effective for large-scale mapping of small water 
bodies.

2.2. Airborne LiDAR-based water mapping

For surface water mapping, topographic ALS is less 
commonly used than other methods, excluding 
bathymetric LiDAR (Szafarczyk and To 2023). The 
essence of topographic LiDAR in this context is to 
leverage the intensity values of airborne LiDAR and 
the fact that LiDAR point density within water areas is 
often lower than in non-water areas. Specifically, 
when an ALS flight strip passes over a water body, 
the number of reflective returns can decrease sharply 
as the angle of the laser deviates from nadir. This 
significant dropout occurs due to the specular, or 
directional, properties of light reflection on water 
surfaces, in contrast to the more diffuse reflection 
observed on non-water surfaces (Höfle et al. 2009).

The foundational work in this area was conducted 
by Brzank et al., utilizing a supervised fuzzy classifica
tion method using height, intensity, and point density 
(Brzank et al. 2008). Similarly, HÖfle et al. employed 
both intensity and point density, modeled them with 
sensing geometry, and conducted seeded region 
growing segmentation (Höfle et al. 2009). 
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Smeeckaert et al. utilized support vector machines 
using historical coastline data (Smeeckaert et al.  
2013). Likewise, Crasto et al. used a decision tree 
approach, leveraging LiDAR’s point density, elevation, 
and intensity (Crasto et al. 2015). The machine learn
ing trend continued with studies such as those by 
Malinowski et al., integrating radiometric and geo
metric laser point features of full-waveform LiDAR 
into supervised classifiers for flood mapping 
(Malinowski et al. 2016).

The fusion of LiDAR with other datasets also 
emerged. For instance, Irwin et al. merged airborne 
LiDAR data with SAR imagery to reduce surface water 
overestimation in vegetated areas (Irwin et al. 2017). 
Another study by ProÅ¡ek et al. used support vector 
machine by combining multiple LiDAR-based vari
ables with hyperspectral imagery (Prošek et al.  
2020). Beyond water body-specific mappings, other 
machine learning methods, specifically employing 
richer datasets such as multi-spectral LiDAR (Pan 
et al. 2019; Yu et al. 2021, 2022; Zhao et al. 2021) or 
hyperspectral data (Akwensi, Kang, and Wang 2023; 
Guo et al. 2023), have exhibited promising results.

Machine learning methods, particularly when inte
grated with other remote sensing data, offer the 
potential for high accuracy. However, these methods 
necessitate significant human intervention. To 
address, a notable advancement in this domain is 
the introduction of the scan line intensity – elevation 
ratio (SLIER) (Shaker, Yan, and LaRocque 2019; Yan  
2023; Yan, Shaker, and LaRocque 2019). This is 
designed to automatically produce reliable training 
labels based on the observation that water surfaces 
generally display a lower elevation variance but exhi
bit heightened intensity fluctuations in LiDAR 
datasets.

Despite advancements, the complexity of large- 
scale LiDAR data combined with machine learning 
techniques highlights that a universally reliable and 
scalable solution for surface water mapping has yet to 
be achieved. While SLIER (Yan 2023) can autono
mously generate training labels, its line-by-line pro
cessing amplifies computational demands and 
redundancy, particularly as ALS often results in over
lapping and convoluted scan lines due to repetitive 
scans and diverse swaths. Such complexities further 
complicate the quest for consistent and trustworthy 
performance in large-area mapping projects. Beyond 
SLIER’s unique challenges, ensuring highly reliable 

performance, especially in machine learning-driven 
methods, remains a persistent challenge in remote 
sensing, regardless of the use of LiDAR or other tech
nologies. The issue mirrors challenges in mapping 
with optical and radar imagery due to data distribu
tion shifts (Tuia, Persello, and Bruzzone 2016; Wieland 
et al. 2023).

2.3. Scalable surface water mapping: challenges 
and opportunities

A primary challenge in scalable surface water map
ping, for both optical and LiDAR methods, is the 
variable reflectance of water in remote sensing data. 
This variability is heightened in high-resolution 
mappings which often target smaller water bodies 
with varied spectral properties, making them more 
prone to signal noise and environmental factors. 
Moreover, large-area mapping often requires multi
ple image captures due to the limited swath width, 
especially in high-resolution imaging. These varied 
captures introduce more variability in water reflec
tance due to differing atmospheric conditions or 
sensor types, complicating water mapping scalabil
ity (Ogilvie et al. 2018).Given the variations in 
remote sensing data features, coupled with the 
multitude of water body types, existing methods 
necessitate repetitive training dataset creation and 
validation. This not only complicates large-scale 
applications but requires rigorous human- 
validation for machine learning-based outputs 
(Bijeesh and Narasimhamurthy 2020).

In the meantime, the topographic map is 
a composite of terrain and water, each shaping the 
other. Capturing this dynamic interaction requires 
both terrain and water maps, along with their respec
tive elevations, underscoring the pivotal role of eleva
tion in augmenting the utility of surface water maps 
(Musa, Popescu, and Mynett 2015). ALS is, therefore, 
indispensable not only for creating high-resolution 
terrain maps but also for embedding elevation infor
mation into surface water maps. Its potential 
increases with the expanding collection of national- 
scale airborne LiDAR data (Moudr et al. 2023; Stoker 
and Miller 2022). Yet, while airborne LiDAR has been 
predominantly used for terrain mapping, generating 
a holistic 3D topographic map – encompassing 
a surface water map – has often necessitated separate 
optical images (Moore et al. 2019). This is primarily 
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due to the absence of an ALS-based fully automated 
and scalable water mapping algorithm.

Recent advancements in LiDAR technology, such as 
the development of topo-bathymetric LiDAR 
(Mandlburger et al. 2020) and systems integrating 
LiDAR with optical sensors (Janowski et al. 2024), 
show promise for simultaneous surface water and 
topographic mapping. Nevertheless, the differences 
in ideal laser bandwidth for bathymetric and topo
graphic data collection limit their effectiveness when 
compared to systems dedicated solely to one type of 
mapping (Awadallah, Juárez, and Alfredsen 2022; 
Kastdalen et al. 2024). Additionally, the higher costs 
associated with these advanced systems cannot be 
overlooked. In this context, the advantages of devel
oping scalable surface water mapping techniques 
using traditional topographic laser scanning are evi
dent. Such developments would not only enhance 
the utility of current systems but also take advantage 
of the vast amount of data already collected.

In this paper, we present an unsupervised, scalable 
water mapping approach that only requires the 3D 
coordinates from topographic ALS. This method capi
talizes on an intrinsic physical property of water: the 
surface of connected water bodies is flat. By introdu
cing a novel water elevation-based region merging 
technique, we offer scalable mapping without the 
necessity for training procedures or repetitive para
meter tuning. Since it doesn’t utilize intensity data, it 
eliminates the need for sensor- and scan-specific cali
brations and mitigates uncertainties linked to surface 
reflectance. Thus, it paves the way for fine-scale, 

comprehensive surface water mapping and facilitates 
the creation of a full 3D topographic map using only 
airborne LiDAR data.

3. Proposed water mapping method

3.1. Overall strategy

A typical LiDAR sensor emits near-infrared pulses, 
which are often absorbed or largely undergo specular 
reflection at higher incidence angles when interacting 
with water. This leads to significant laser point drop
outs over water bodies in airborne LiDAR data (Höfle 
et al. 2009). Thus, local LiDAR point density can poten
tially differentiate water from non-water areas. 
However, challenges arise due to obstructions and 
varied incidence angles affecting point density, mak
ing direct point density use for water body mapping 
complex. While intensity information was previously 
employed to counteract this, inconsistencies in sen
sing conditions limit its scalability for water mapping.

Our approach uniquely hinges on the point cloud’s 
3D coordinates, eschewing intensity, and incorpo
rates the robust physical constraint that connected 
surface water remains flat. Figure 1 offers a visual 
representation of standard topographic ALS.

The marked red dots are the points detected by the 
receiver. Only the 3D coordinates of these dots are 
considered. As shown, sparser points might indicate 
water bodies or areas obscured by structures. Our 
method first labels low-density areas as potential 
water regions and then filters out false positives 

Figure 1. Profile view of an airborne laser scanning with red dots indicating detected points.
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arising from tall structures. Also, due to lower inci
dence angles or surface water conditions, some por
tions of a water body can have high point density, 
resulting in incomplete, initial water segments. To 
address this, we expand the initial water segment by 
merging it with others of similar elevations that con
nect to the original segment. In sum, our approach 
consists of (1) initial water segment extraction and (2) 
water elevation-based region merging (WERM).

3.2. Initial water segments extraction

Our approach extracts initial water segments based on 
lower point density over water bodies, due to water’s 
specular reflection and absorption of infrared light. 
Specular reflection often directs laser light away from 
the sensor, particularly at oblique angles, while absorp
tion reduces return signals. For an illustration of how 
acquired airborne LiDAR data points vary in density over 
areas with water bodies, and to see examples of initial 
water segments extracted using this data, please refer to 
“1. Initial water segments extraction”of Figure 2.

First, raw airborne LiDAR data is rasterized into 
a high-resolution 2D gridded space, G, forming 
a digital surface model (DSM). This converts LiDAR 
point clouds into an m� n grid, where m and n 
represent pixel counts in rows and columns, respec
tively. Pixels without any laser point registration are 
termed as E. Areas with higher non-registered pixel 
concentrations are likely water bodies. The method 
determines the average cell density (P) of a DSM 
using: 

Then, a sliding window W , sized N � N pixels, tra
verses over G. For each position of W , the count of non- 
empty cells within it follows a BðN2; PÞ binomial distri
bution. We adjust this to BðN2; P0Þ where P0 ¼ P=2 to 
account for commission errors arising from point density 
imbalances due to scanning overlaps. A center pixel in 
the window is labeled as water if its point count falls 
below the confidence interval’s lower bound: 

Finally, connected pixels labeled as water become 
initial water segments S. By default, the point clouds 
are rasterized into a 0:5m grid, employing a 9� 9 win
dow and a default confidence level of 2 (the critical 
z-score, Z). This setup aligns with typical optical imagery 
used for ground truthing and is sufficiently detailed for 
city-level and national mapping applications, especially 
considering the dynamic nature of water bodies. The 
choice of resolution can vary based on project needs 
and resource availability. However, caution is necessary 
to maintain the inherent, relative point density gap 
between water and non-water bodies without exces
sively distorting the original distribution. For example, 
a 1m resolution with 100 points=m2 of point cloud data 
could significantly increase the likelihood of capturing 
laser points per cell over water bodies. If higher resolu
tion is not needed, random downsampling of the origi
nal point clouds would be beneficial.

In densely urbanized areas with numerous high- 
rises, an optional “building buffer”operation can be 
implemented. This strategy aims to prevent false- 
positive water segments that arise from occlusions 
created by tall buildings. For this, we utilize a 3D 
building mapping algorithm (Song and Jung 2022).

3.3. Water elevation-based region merging

Initial water segments derived previously are generally 
incomplete due to varying point densities within water 
regions. Thus, our method expands these segments, 
assuming that connected water bodies share similar 
elevations. For a visual representation of how WERM 
operates and its impact on improving the initial water 
segments, please see “2. Water Elevation-based Region 
Merging (WERM)”in Figure 2. This figure displays the 
transformation from initial water segments to final 
water bodies, illustrating the principle of the elevation- 
based merging strategy in capturing the full extent of 
water surfaces.

For every initial segment Si, regions of the similar 
elevation are extracted by “slicing”the DSM perpendi
cular to the elevation axis. Specifically, for each Si, we 
determine its elevation Ei by computing the 10th per
centile of the corresponding DSM’s elevation EDi : 
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Next, for each Si, we identify regions of nearly iden
tical elevation by slicing the DSM within a � 0:1m 

interval around Ei, reflecting the typical vertical accu
racy of airborne LiDAR data. 

Figure 2. Overview of the method: (1) initial water segments extraction, utilizing the specular reflection and absorption properties of 
surface water bodies. (2) water elevation-based region merging, leveraging the principle that connected surface water remains flat.
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Then, a connected component labeling algorithm 
identifies subsets Cj in the binary image formed by Si 

and Ri. Intersecting components with Si are merged, 
creating refined water segments Si0 : 

In such manner, WERM expands these segments 
into nearby regions of similar elevation. For enhanced 
precision in elevation and boundary, the process iter
ates twice by default on each Si0 to derive Si0 0 : 

The final surface water map includes both the 
initial and merged segments. Since these water 
body boundaries are delineated based on the eleva
tions captured by LiDAR, they demonstrate high pre
cision. WERM is applied to initial segments of water 
bodies larger than 500m2, deliberately excluding 
minor elements like puddles to prevent unnecessary 
extension of their boundaries. It’s important to note 
that our algorithm does extract water bodies smaller 
than 500m2, but does not apply WERM to these 

smaller entities to avoid their undue expansion. The 
parameters for WERM, such as the 10th percentile, 
a range of �0:1m, and the 500m2 threshold, are 
empirical defaults proven to be effective across 
diverse landscapes with different airborne LiDAR 
datasets. A detailed discussion on parameters is pro
vided in Section 5.

Datasets and experimental design

We aimed to develop a scalable water mapping algo
rithm, so our evaluation utilized data spanning 
diverse and extensive landscapes. We assessed five 
datasets (Figure 3) that cover three metropolitan 
regions, featuring diverse types of rivers and lakes, 
a mountainous territory, and a coastal urban area. 
These datasets encompass seas, lakes, rivers, streams, 
ponds, wetlands, ditches, and snows, totaling an area 
of approximately 2,500km2 with 10 billion pixels at 
0.5 m resolution.

For quantitative assessment, we utilized the water 
body layer from the U.S. Geological Survey (USGS) 
High Resolution National Hydrography Dataset Plus 

Figure 3. Datasets used for evaluation: three metropolitans (Denver, Dallas, Orlando), a mountainous area (Wind River), and a coastal 
zone (Hollywood), totaling approximately 2,500km2.
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(NHDPlus HR) (Moore et al. 2019). Referencing 
NHDPlus HR, we calculated Intersection over Union 
(IoU), precision, recall, F1-score, and overall accuracy 
(OA) for the quantitative evaluation:

• Intersection over Union (IoU): Ratio of the inter
section to the union of predicted and actual water 
bodies.

• Precision: Proportion of true positive predictions 
among all positive predictions.

• Recall: Proportion of actual water pixels correctly 
predicted among all actual water pixels.

• F1-score: Harmonic mean of precision and recall, 
balancing both metrics.

• Overall Accuracy (OA): Proportion of correctly 
identified pixels (both water and non-water) out of 
the total number of pixels.

To facilitate robust validation of our method’s per
formance on a large scale, we benchmarked it against 
two highly competitive versions of established nor
malized difference water index (NDWI)-based meth
ods. The first (“NDWI-G-Opt’’) determined an optimal 
threshold value for the highest overall accuracy (OA) 
relative to the NHDPlus HR reference per experimen
tal dataset. The second (“NDWI-L-Opt’’) segmented 
datasets into tiles and optimized the threshold for 
each tile to achieve the highest performance relative 
to the reference. Hence, while the first method con
structs a water map using a universally optimal 
threshold, the second stitches locally optimized tiles. 
Though these NDWI methods aren’t entirely practi
cal – as groundtruths are supposed to be unknown – 
we employed them to benchmark our approach strin
gently. Their thresholds were fine-tuned between 0 
and 0.9 at 0.05 increments, mirroring (Chen et al.  
2020a). In contrast, our technique consistently used 
one default parameter set across all datasets, proving 
its innate scalability and robustness without site- 
specific adjustments.

Table 1 provides a detailed summary of the data
sets utilized in our assessment, which considered the 
diversity of both geographic and LiDAR data acquisi
tion configurations. All LiDAR data were sourced from 
the USGS’s 3D Elevation Program (3DEP) (Stoker and 
Miller 2022). For NDWI-based methods, we used the 
<1 meter resolution, near-infrared and green bands 
from the U.S. Department of Agriculture’s National 
Agriculture Imagery Program (NAIP).

Importantly, the vastness of our dataset means that 
average results might not capture all performance 
nuances. For instance, statistics can be skewed by 
a few large water bodies. Moreover, the NHDPlus HR 
categorizes certain features like snow and wetlands as 
water bodies; these are temporally variable and are not 
the primary focus of either our proposed or NDWI- 
based methods. To gain better insights, we implemen
ted a tile-based evaluation alongside the standard 
quantitative analysis. This involved dividing the entire 
experimental area into small tiles (optimized by the 
“NDWI-L-opt”method). We then excluded tiles that con
tained a large amount of snow, wetlands, or other types 
of label errors to refine our sample tiles for evaluation, 
termed “Reliable Tiles’.’ Additionally, we identified 
“Challenging Tiles”based on the pronounced discrepan
cies between surface water maps. By doing so, we offer 
results from diverse subsets of the entire tile collection, 
rather than presenting a singular outcome.

Moreover, we conducted additional comparative 
analyses against supervised methods. This approach 
allows us to contrast our method with highly compe
titive alternatives, which, although requiring training 
labels, are utilized due to the limited availability of 
public benchmark datasets and algorithms for unsu
pervised LiDAR-based methods. Consequently, we 
employed both machine learning-based classifica
tions and deep learning-based semantic segmenta
tion methods, using two distinct types of input 

Table 1. Summary of the experimental datasets.
Name Denver Wind River Dallas Orlando Hollywood

Location Denver, CO Wind River, WY Dallas, TX Orlando, FL Hollywood, FL
Dimension 25-km by 25-km 13-km by 13-km 35-km by 35-km 20-km by 20-km 25-km by 2.5-km
Geography Metropolitan area Mountainous area Metropolitan area Metropolitan area Coastal area

Leica TerrianMapper Leica TerrianMapper Leica ALS 80 Leica ALS 80 Riegl VQ-1560i
2.4 points=m2 2.0 points=m2 3.0 points=m2 9.8 points=m2 8.2 points=m2

Scanning details AGL: 2.7–3.1km AGL: 3.0–3.2km AGL: 1.8km AGL: 1.4km AGL: 1.3km
scan angle: 40� scan angle: 40� scan angle: 35� scan angle: 40� scan angle: 60�

overlap: 20% overlap: 25% overlap: 30% overlap: 60% overlap: 30%
LiDAR acquisition 2020.05.–2020.06. 2019.08.–2019.09. 2019.03.–2019.07. 2018.12.–2019.03. 2018.06.
NAIP acquisition 2019.08.–2019.09. 2019.08. 2020.10.–2020.11. 2019.11. 2019.11.
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datasets: optical imagery and airborne LiDAR data. 
Specifically, the optical imagery input comprised 
stacked RGB-NIR imagery from NAIP. For the LiDAR 
input, we constructed four feature maps from the 
3DEP airborne LiDAR data, including the DSM, inten
sity, standard deviation of elevation, and point den
sity. We normalized DSM and intensity data after 
clipping the top and bottom 2% of values and calcu
lated the standard deviation of elevation and point 
density using a 9-m by 9-m kernel. These features 
were selected for their proven effectiveness in super
vised water mapping (Crasto et al. 2015; Höfle et al.  
2009; Malinowski et al. 2016).

5. Experimental results

5.1. Detailed performance analysis across datasets

Throughout Figures 4–8, subfigure A shows the 
entire extent of each dataset, presenting the color- 

infrared (CIR) image alongside the surface water map 
generated by the proposed method, labeled as 
“OUR.”Subfigure B highlights three subset regions 
with significant differences among surface water 
maps, along with their corresponding OA and IoU 
values against the reference. The “USGS”label repre
sents the USGS NHDPlus HR surface water map, used 
as our benchmark for quantitative metrics. Subfigure 
C provides statistical insights: Boxplot C1 shows the 
distribution of OAs, while Tables C2 and C3 present 
results from different subsets of the tile collection. 
C2 shows results from the top 10 tiles (top 3 for 
Hollywood), referred to as Challenging Tiles, with 
the most pronounced IoU discrepancies. C3 presents 
outcomes from Reliable Tiles, excluding those with 
significant errors, and C4 shows results for all tiles 
without exclusion.

In the Denver dataset (Figure 4), the proposed 
method consistently achieved higher accuracy com
pared to NDWI-based methods. Notably, our 

Figure 4. Performance analysis on the Denver dataset. (a) Proposed method’s water map vs. CIR image; (b) detailed views comparing 
CIR, NDWI, and three water maps against USGS NHDPlus HR reference; (c) statistical comparisons of three methods presented in box 
plots and tables, each reflecting different subsets of the entire tile.
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approach excelled at detecting intricate and small 
water bodies, such as stream branches, with greater 
precision than the alternatives. As shown in the first 
row of Figure 4b, the proposed method exhibited 
fewer false positives in urban areas compared to the 
NDWI-based methods. NDWI-L-opt, even with its local 
optimization, produced many false positives, while 
NDWI-G-opt identified more water bodies but at the 
cost of an increased false positive rate, resulting in 
reduced OA and IoU. As depicted in subsequent rows 
of Figure 4b, our method consistently surpassed the 
NDWI methods in OA and IoU metrics and closely 
emulated the USGS reference, particularly in delineat
ing intricate stream branches. Additionally, as shown 
in the Boxplot of Figure 4c, our method exhibits the 
smallest deviation in OA and higher accuracy com
pared to other methods, underscoring its robustness 
and scalability. Tables C2-C4 further reinforce this 
robustness, with consistently high accuracy across 
various tile subsets.

The Wind River dataset results (Figure 5) demon
strate the effectiveness of our method in mountai
nous terrain, characterized by steep topography and 
extensive shadows. Our method adeptly differentiates 
water bodies from terrain shadows, whereas NDWI- 
based methods often incur significant errors. In parti
cular, these methods tend to misinterpret shadows as 
water, introducing noise in regions influenced by 
rugged terrain and vegetation. In contrast, the pro
posed method closely aligns with the reference data 
overall. Boxplot C1 (Figure 5c) highlights our meth
od’s superior OA with minimal variance compared to 
NDWI-based methods, demonstrating its robustness. 
This is particularly notable as no parameter adjust
ments were made for the entire mapping coverage. 
Across metrics C2–C4, our method consistently shows 
high accuracy.

The Dallas dataset results (Figure 6) demonstrate 
the robustness of our method across various water 
bodies, including a large river, branching creeks, 

Figure 5. Performance analysis on the wind River dataset. (a) Proposed method’s water map vs. CIR image; (b) detailed views 
comparing CIR, NDWI, and three water maps against USGS NHDPlus HR reference; (c) statistical comparisons of three methods 
presented in box plots and tables, each reflecting different subsets of the entire tile.
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lakes, and scattered wetlands, streams, and ponds. 
As shown in Figure 6b, which depicts reservoirs, 
streams, and lakes, our method excels in terms of 
OA and IoU. Notably, it captures even minor creeks 
not outlined in the reference. In contrast, the 
NDWI-L-opt and NDWI-G-opt methods struggle to 
precisely map water bodies. While NDWI-L-opt 
achieves the highest OA in some cases, our method 
effectively identifies minor creeks when juxtaposed 
with the CIR image, highlighting areas where 
NDWI-based methods falter. This underscores the 
fact that quantitative metrics can sometimes fail 
to reflect the true efficacy of a method due to 
imperfections in the reference. In Figure 6c, our 
method’s overall performance aligns with NDWI- 
L-opt in terms of IoU, F1-score, and OA; however, 
the higher recall and lower precision indicate that 
our method detects more water. This is further 
supported by the observation that our method 
identifies smaller water bodies not delineated in 

the reference map, as evident in Figure 6b. The 
Dallas dataset predominantly consists of small 
water bodies, many of which are inaccurately repre
sented. Consequently, the quantitative results may 
deviate more than those from other datasets due to 
misalignment with the actual performance of the 
different methods.

Our method accurately mapped diverse lakes and 
ponds across the flat metropolitan terrain, as demon
strated in the Orlando dataset results (Figure 7a). The 
abundance and variability of water bodies in this 
dataset made surface water mapping particularly 
challenging for elevation-based approaches. 
Figure 7b provides detailed insights from three 
selected regions. The first row displays urban lakes 
and ponds, where our method shows superior accu
racy in both OA and IoU. In contrast, the two NDWI- 
based methods omit numerous water bodies due to 
some non-aquatic areas having higher NDWI values 
than actual water bodies. While adjusting the 

Figure 6. Performance analysis on the Dallas dataset. (a) Proposed method’s water map vs. CIR image; (b) detailed views comparing 
CIR, NDWI, and three water maps against USGS NHDPlus HR reference; (c) statistical comparisons of three methods presented in box 
plots and tables, each reflecting different subsets of the entire tile.
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threshold might include more water areas, it would 
also increase the likelihood of false positives. NDWI- 
L-opt detected more water than NDWI-G-opt but 
introduced additional noise. The second row high
lights our method’s ability to discern algae-covered 
water bodies, a scenario where NDWI methods strug
gle. Our technique effectively detects these due to the 
similar elevations of algae-covered and clear lakes. 
The third row presents areas where high-rise build
ings and lakes are juxtaposed. NDWI imagery shows 
that shadows from buildings often have higher NDWI 
values than real water areas, leading to inaccuracies in 
NDWI-based techniques. Statistical results in Figure 7c 
further demonstrate the efficacy and reliability of the 
proposed method across diverse scenarios.

The proposed method effectively extracted water 
bodies in a coastal urban area adjacent to the ocean, 
as shown in the Hollywood dataset (Figure 8a), which 
features various creeks, bays, and artificial waterways. 
Figure 8b displays three of the ten tiles from the 

Hollywood dataset. Overall, both the proposed 
method and the NDWI-based method produced satis
factory results in water body detection. In every case, 
the OA and IoU values exceeded 0.9 and 0.8, respec
tively. Compared to the USGS’s water body layer, the 
most common errors arose from occlusions and sha
dows cast by tall coastal buildings. Other discrepan
cies came from minor inland water bodies or false 
negatives caused by watercraft docked along the 
waterways. Among all the methods tested, the pro
posed method achieved the highest accuracy, parti
cularly in preventing errors from shadows or 
occlusions. Figure 8c furnishes quantitative results. 
The three omitted tiles in C3 correspond to the bot
tom three tiles in Figure 8a, as NHDPlus HR classified 
mangroves as water bodies. All methods, except for 
the three exclusions, achieved metrics above 0.85, 
with our method demonstrating the highest accuracy.

Table 2 summarizes the performance of different 
methods across five datasets. The mean values of IoU, 

Figure 7. Performance analysis on the Orlando dataset. (a) Proposed method’s water map vs. CIR image; (b) detailed views comparing 
CIR, NDWI, and three water maps against USGS NHDPlus HR reference; (c) statistical comparisons of three methods presented in box 
plots and tables, each reflecting different subsets of the entire tile.
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precision, recall, F1-score, and OA, assessed using 
Reliable Tiles, are tabulated for each method, along 
with their average over the five datasets. Our method 

showed the highest accuracy in all metrics, signifi
cantly outperforming the NDWI-based methods. 
Notably, our method achieved a 22.7% higher mean 

Figure 8. Performance analysis on the Hollywood dataset. (a) Proposed method’s water map vs. CIR image; (b) detailed views 
comparing CIR, NDWI, and three water maps against USGS NHDPlus HR reference; (c) statistical comparisons of three methods 
presented in box plots and tables, each reflecting different subsets of the entire tile.

Table 2. Summary of the proposed method’s performance against ndwi-based methods across five datasets: this table presents mean 
intersection over union (IoU), precision, recall, F1-score, and overall accuracy (OA) evaluated using reliable tiles. The “NDWI- 
G-opt”method selects the global optimal threshold for each test dataset, while “NDWI-L-opt”chooses the local optimal threshold 
for each tile based on the reference label.

Method Metric Denver Wind River Dallas Orlando Hollywood Average

NDWI-G-opt IoU 0.669 0.518 0.579 0.645 0.870 0.656
Precision 0.836 0.702 0.858 0.923 0.967 0.857
Recall 0.769 0.664 0.640 0.681 0.896 0.730
F1-score 0.802 0.682 0.733 0.784 0.930 0.786
OA 0.987 0.947 0.989 0.939 0.942 0.961

NDWI-L-opt IoU 0.773 0.640 0.662 0.677 0.871 0.725
Precision 0.937 0.751 0.914 0.956 0.969 0.905
Recall 0.815 0.812 0.705 0.699 0.896 0.785
F1-score 0.872 0.780 0.796 0.808 0.931 0.837
OA 0.992 0.961 0.991 0.946 0.943 0.967

Proposed Method IoU 0.795 0.873 0.656 0.805 0.898 0.805
Precision 0.908 0.947 0.772 0.957 0.988 0.914
Recall 0.865 0.918 0.815 0.835 0.908 0.868
F1-score 0.886 0.932 0.793 0.892 0.946 0.890
OA 0.993 0.989 0.990 0.967 0.956 0.979
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IoU compared to NDWI-G-opt and an 11.0% improve
ment over NDWI-L-opt on average. Additionally, it 
achieved a 13.2% higher mean F1-score compared 
to NDWI-G-opt and a 6.3% improvement over NDWI- 
L-opt on average, underscoring its superior efficacy in 
scalable and accurate surface water mapping.

5.2. Comparative analysis against supervised 
methods

For machine learning methods, we employed pixel- 
based classification using random forest (RF) and sup
port vector machine (SVM) classifiers. These methods 
were chosen for their wide adaptability and high 
performance in surface water mapping tasks (Bijeesh 
and Narasimhamurthy 2020; Ko, Kim, and Nam 2015; 
Sun et al. 2015). While we acknowledge that the ideal 
benchmark would be an automated unsupervised air
borne LiDAR-based method, we chose machine learn
ing-based methods due to the limited availability of 
such unsupervised methods in this field. It is impor
tant to note that machine learning methods using 
airborne LiDAR data are currently the state-of-the-art 
practice for surface water mapping, as existing meth
ods typically employ machine learning classifiers after 
collecting training samples manually (Malinowski 
et al. 2016; Yu et al. 2022) or automatically (Yan 2023).

For the experiment, we created a subset of the Dallas 
dataset, covering an area of 14 km by 8 km, consisting of 
diverse surface water bodies (Figure 9). To imitate prac
tical conditions, we created 122 training polygons using 
QGIS software, totaling over 100,000 pixels of water and 
non-water classes. From this set, we randomly selected 
5,000 pixels for training. We then employed a five-fold 
cross-validation approach combined with parameter 
grid searching. For the SVM classifier, using the radial 
basis function kernel, we tested different values for the 
“C” parameter (0.1, 1, 10, 100) and the “Gamma” para
meter (0.01, 0.001, 0.0001). For the RF classifier, we 
experimented with various settings for the number of 
estimators (50, 100, 200) and the maximum depth of the 
trees (0, 10, 20). We replicated five experiments, each 
with a different random sampling of training samples. 
The implementation was carried out using Python’s 
scikit-learn library, version 1.3.2.

Our method generally obtained higher accuracy 
compared to pixel-based machine learning 
approaches for both optical and LiDAR datasets at 
their highest accuracies (Table 3). Specifically, our 

method obtained an IoU of 0.706 and an F1-score of 
0.827, compared to the highest IoU of 0.696 and F1- 
score of 0.821 using RGB-NIR with SVM, and the high
est IoU of 0.562 and F1-score of 0.719 using LiDAR- 
based features with RF. The accuracy trends with 
varying training sample sizes indicate that both 
machine learning methods have reached close to 
their best obtainable accuracies.

Figure 9 illustrates the subset area within the Dallas 
dataset with corresponding (a) RGB imagery, (b) 
Digital Elevation Model, (c) LiDAR point clouds pro
jected into a gridded array, (d) LiDAR intensity map, 
and (e) training sample polygons for water and 
ground. Figures 9 (f-h) display the generated surface 
water maps with omission and commission errors for 
the proposed method, SVM with RGB-NIR, and RF with 
LiDAR features, respectively. Correctly identified sur
face water pixels are shown in blue, omission errors in 
orange, and commission errors in red.

Compared to our method, RF with LiDAR features 
showed lower accuracy, with more salt-and-pepper 
noise and commission errors. Our method’s superior 
performance can be attributed to its ability to lever
age the spatial context and physical properties of 
surface water, ensuring that connected water bodies 
remain flat. Advanced feature development 
(Malinowski et al. 2016), higher-quality training sam
ples, and incorporating more spatial-contextual infor
mation beyond the pixel level – such as using patches 
(Song, Kim, and Kim 2019) or larger receptive fields, as 
seen in deep learning (Wieland et al. 2023) – would 
also improve performance. Nonetheless, the unique 
advantages offered by our proposed method – oper
ating without a training procedure and ensuring clear 
elevation demarcation at the interface of water 
bodies and terrain – remain undiminished.

For deep learning, we used the U-Net model, 
renowned for its effectiveness in high-resolution sur
face water mapping (Wieland et al. 2023).While spe
cialized and pre-trained models (Chen et al. 2020b; 
Isikdogan, Bovik, and Passalacqua 2019; Luo, Tong, 
and Hu 2021) could improve results, we opted for 
standard U-Net to establish a clear benchmark and 
minimize complexity. We used the Denver and Wind 
River datasets (Table 1) and employed three different 
training sampling methods: “Random Mix,””North/ 
South,”and “Cross-state.”Each method experienced 
different levels of data distribution shift. Random 
Mix involved completely randomly selected training 
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Figure 9. Visualization of the subset area within the Dallas dataset and surface water mapping results. (a) RGB imagery. (b) Digital 
elevation model. (c) LiDAR point clouds colorized by elevation values. (d) LiDAR intensity map after interpolation. (e) Training sample 
polygons for water and ground over the grayscale image. (f-h) generated surface water maps and errors for (f) the proposed method, 
(g) support vector machine with RGB-NIR, and (h) random forest with LiDAR features, respectively. Correctly identified surface water 
pixels are shown in blue, omission errors in orange, and commission errors in red. Overall accuracy (OA) and intersection over union 
(IoU) values are provided for each method.
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samples, providing a well-mixed dataset, the most 
favorable for training. North/South involved collect
ing training data from the northern half, while the 
southern half was reserved for testing. Cross-state 
entailed training on one state’s dataset (e.g. Denver) 
and testing on another’s (e.g. Wind River), and vice 
versa. We randomly sampled non-overlapping train
ing and test datasets from Reliable Tiles, which 
excluded tiles with significant noise, to ensure fair 
and accurate benchmarking of performance. The 
same test datasets were used for Random Mix and 
Cross-state, while only the southern part was used for 
North/South. Our method’s evaluation also used the 
same corresponding datasets. For U-Net training, we 

used 256 by 256 pixels size with 1-m resolution input 
data using the Adam optimizer with a batch size of 16. 
We explored various learning rates (1� 10� 3, 
1� 10� 4, 1� 10� 5) over five iterations for each sce
nario and reported the highest mean IoU among the 
three learning rates for each scenario to provide 
a strong baseline. We applied early stopping with 
a patience of 5. The implementation was conducted 
using PyTorch version 2.1.1.

As shown in Table 4, our method achieved com
parable accuracy to the supervised method in cases 
where deep models were trained and tested in the 
same experimental area (Random Mix and North/ 
South) and obtained significantly higher accuracy in 

Table 3. Summary of the proposed method’s performance against pixel-based machine learning methods for the subset of the Dallas 
dataset: this table presents the mean and standard deviation of intersection over union (IoU), precision, recall, F1-score, and overall 
accuracy (OA) evaluated using the NHD plus HR dataset with different numbers of training samples. “RF” indicates the random forest 
classifier. “SVM”indicates the support vector machine classifier.

Method
Metric Number of Training Samples

5,000 10,000 15,000 20,000 25,000

RF (RGB-NIR) IoU 0.667 � 0.01 0.679 � 0.01 0.685 � 0.01 0.687 � 0.01 0.688 � 0.01
Precision 0.807 � 0.01 0.822 � 0.01 0.829 � 0.01 0.831 � 0.01 0.830 � 0.01
Recall 0.794 � 0.01 0.797 � 0.00 0.798 � 0.00 0.798 � 0.00 0.800 � 0.00
F1-score 0.800 � 0.01 0.809 � 0.01 0.813 � 0.00 0.814 � 0.00 0.815 � 0.00
OA 0.984 � 0.00 0.985 � 0.00 0.986 � 0.00 0.986 � 0.00 0.985 � 0.00

SVM (RGB-NIR) IoU 0.690 � 0.01 0.696 � 0.01 0.695 � 0.01 0.694 � 0.00 0.696 � 0.00
Precision 0.808 � 0.02 0.815 � 0.01 0.814 � 0.01 0.813 � 0.01 0.815 � 0.00
Recall 0.826 � 0.00 0.826 � 0.00 0.826 � 0.00 0.826 � 0.00 0.826 � 0.00
F1-score 0.816 � 0.01 0.821 � 0.00 0.820 � 0.00 0.820 � 0.00 0.821 � 0.00
OA 0.985 � 0.00 0.986 � 0.00 0.986 � 0.00 0.986 � 0.00 0.986 � 0.00

RF (LiDAR-Featuresa) IoU 0.546 � 0.04 0.558 � 0.03 0.557 � 0.03 0.554 � 0.03 0.562 � 0.04
Precision 0.580 � 0.04 0.592 � 0.04 0.593 � 0.03 0.588 � 0.03 0.599 � 0.05
Recall 0.906 � 0.01 0.905 � 0.01 0.903 � 0.01 0.905 � 0.01 0.903 � 0.01
F1-score 0.706 � 0.03 0.715 � 0.03 0.715 � 0.02 0.712 � 0.02 0.719 � 0.03
OA 0.970 � 0.01 0.971 � 0.00 0.971 � 0.00 0.971 � 0.00 0.972 � 0.01

SVM (LiDAR-Featuresa) IoU 0.468 � 0.03 0.461 � 0.02 0.460 � 0.02 0.462 � 0.02 0.468 � 0.02
Precision 0.504 � 0.03 0.495 � 0.02 0.493 � 0.02 0.495 � 0.03 0.503 � 0.02
Recall 0.868 � 0.01 0.873 � 0.01 0.874 � 0.01 0.872 � 0.01 0.874 � 0.01
F1-score 0.637 � 0.03 0.631 � 0.02 0.630 � 0.01 0.632 � 0.02 0.638 � 0.02
OA 0.960 � 0.00 0.960 � 0.00 0.959 � 0.00 0.959 � 0.00 0.960 � 0.00

Proposed Method No Training Needed
IoU 0.706
Precision 0.800
Recall 0.857
F1-score 0.827
OA 0.986

aLiDAR-Features:Four stacked feature maps derived from LiDAR, including the DSM, intensity, standard deviation of elevation, and point density.

Table 4. Comparative analysis of our method against deep learning-based semantic segmentation methods (i.e. U-Net) in various 
scenarios: this table presents the mean IoU and its standard deviation values, evaluated using reliable tiles. “Random Mix”with fully 
random samples, “North/South”distinguishes training in the northern region and testing in the southern, and “cross-state”involves 
separate regions (Denver and Wind River) for training and testing. The standard U-Net models are tested using two types of inputs: 
RGB-NIR imagery and LiDAR-derived feature maps.

Test Dataset Denver Wind River

Training Sampling Method Random Mix North/South Cross-state Random Mix North/South Cross-state

U-Net (RGB-NIR) 0:782� 0:01 0:742� 0:02 0:574� 0:06 0:870� 0:01 0:810� 0:05 0:711� 0:01
U-Net (LiDAR-Featuresa) 0:780� 0:01 0:771� 0:01 0:735� 0:04 0:889� 0:00 0:887� 0:00 0:836� 0:06
Proposed Method 0:763 0:753 0:763 0:877 0:877 0:877

aLiDAR-Features:Four stacked feature maps derived from LiDAR, including the DSM, intensity, standard deviation of elevation, and point density.
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scenarios where models were trained and tested in 
different areas (Cross-state). Unlike pixel-based 
machine learning methods, the U-Net with LiDAR- 
based features demonstrated a higher IoU com
pared to the one with RGB-NIR, indicating that the 
deep learning method effectively leveraged the spa
tial context. However, it was still affected by data 
distribution shifts, highlighting the need for high- 
quality training datasets. In contrast, our method 
automatically ensures precise water boundary 
demarcation based on elevation, reducing the 
need for post-processing and streamlining topo
graphic mapping.

6. Discussion

6.1. The impact of parameters

With more extensive experiments, we found that 
adjustments to our method’s parameters within rea
sonable bounds exhibited a minimal effect on the 
overall statistics. However, this limited impact is also 
largely because the statistics are predominantly influ
enced by substantial water bodies, for which our 
method rarely generated errors. Specifically, in our 
tests, the total accuracy seldom varied by more than 
1% within an acceptable parameter range (detailed 
below). Considering the inherent variability in water 
bodies due to elements like precipitation and eva
poration, minor discrepancies made such variations 
even less significant.

To elucidate the dynamics behind key parameters – 
z-score (Z), elevational range (ER), and minimum size 
(MS)—,we selected a region where the impact of 
parameters is most pronounced. Z sets the confi
dence interval for initial water segment identification. 
For more detail, please refer to Section 3.2. A Z value 
of 1.96 corresponds to a 95% confidence level from 
a standard normal distribution. In our method, the 
default Z value is 2. For the parameter analysis, we 
experimented with Z values of 1.5 (for a more aggres
sive water extraction) and 2.5 (for a more conservative 
water extraction). ER specifies an elevation range to 
identify areas with similar elevations by slicing the 
DSM in the WERM algorithm. The default for ER is 
set at 0.1, representing a range of � 0.1 m, in line 
with the typical vertical precision of ALS. We adjusted 
this default to either 0.05 or 0.15, aiming for conser
vative and aggressive region merging, respectively. 

The MS parameter indicates the minimum size of the 
initial water segment to be expanded by WERM. Its 
default setting is 500m2, which excludes minor water 
entities like puddles. We experimented with values of 
100m2 (aggressive) and 1,000m2 (conservative).

Figure 10a displays a CIR image and water map 
derived from a Dallas dataset. With its flat topography 
and diverse water features, such as rivers, wetlands, 
and ponds, parameter adjustments noticeably influ
enced the results. Figure 10b depicts conservative 
case on the left and an aggressive case on the right. 
Variations in Z to 2.5 or 1.5 led to subtle changes, 
underscoring the stability of water pixel identification 
by Z’s role. In contrast, ER adjustments to 0.05 or 0.15 
yielded marked differences. Specifically, an ER of 0.05 
mitigated “flooding”errors, where minor puddles mis
takenly expanded their boundaries to neighboring 
terrains, while 0.15 amplified these errors. Similarly, 
an MS of 1,000m2 reduced such errors, whereas 
100m2 exacerbated them.

We have found that ER and MS influence the out
comes. Yet, their effects, rooted in the physical impli
cations associated with water level and area, are 
predictable, rendering its error relatively manageable.

6.2. Computational complexity analysis and 
implementation details

This section presents the programmatic implementation 
details and computational complexity analysis of the key 
operations in the proposed surface water mapping.

(1) DSM Generation: This operation iterates 
through all LiDAR data points to create a DSM 
grid. It starts by creating a grid based on the 
spatial extent and iterates through each LiDAR 
point, registering them to the grid based on 
their x and y coordinates. Both DSMs with and 
without interpolation are saved. This results in 
a time complexity of OðnÞ, where n is the total 
number of points in the LiDAR file. The inter
polation step has a time complexity of 
Oðm log mÞ, where m represents the number 
of cells in the DSM grid.

(2) Initial Water Segments Extraction: This mod
ule calculates a cell density map using convolu
tion by counting the number of registered 
points using the DSM without interpolation. 
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Several array operations follow to classify 
potential water bodies based on density 
thresholds. Small water bodies are then 
removed based on a size threshold, resulting 
in a map of initial water segments. Each of 
these steps, including convolution and array 
operations, has a time complexity of OðmÞ, 
where m is the number of cells in the DSM grid.

(3) Water Elevation-based Region Merging: This 
module uses the map of initial water segments 
and handles each segment individually. For 
each segment k, it performs DSM slicing to 
identify regions within a specific elevation 
interval and then applies connected 

component labeling to find contiguous 
regions. Segments are merged based on eleva
tion similarity, iterating through labeled seg
ments and updating the merged result and 
elevation map. Both DSM slicing and con
nected component labeling are OðmÞ opera
tions. Consequently, the overall complexity is 
Oðk �mÞ, where k is the number of initial water 
segments and m is the number of cells in the 
DSM grid.

The overall system complexity is 
Oðnþm log mþ k �mÞ, where n is the total 
number of LiDAR points, m is the number of 

Figure 10. The impact of parameters: z-score (Z), elevation range (ER), and minimum size (MS). (Aa) CIR image contrasted with the 
water map using default parameters; (b) side-by-side comparison of water maps with conservative (left) versus aggressive (right) 
parameter adjustments.
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cells in the DSM grid, and k is the number of 
initial water segments. In a typical scenario, the 
total time complexity is primarily influenced by 
the DSM generation (including interpolation) and 
the water elevation-based region merging pro
cesses. The space complexity is largely determined 
by the size of the DSM.

The source code for our workflow, written in Python, 
is available on GitHub: https://github.com/hunsoosong/ 
airborne-lidar-water-mapping. It is important to note 
that the actual runtime will also be affected by factors 
such as the characteristics of the input data, the imple
mentation of algorithms for interpolation, the con
nected components algorithm, and other operations, 
as well as the computational resources available. 
Particularly, if the number of initial water segments (k) 
is large, the computation will be primarily determined 
by the water elevation-based region merging process. 
Adjusting the threshold to refine initial water segments 
by their sizes, thereby eliminating insignificant water 
bodies before the region merging process, is advised 
based on the purpose of the study and available 
resources.

One key aspect of our method is its consideration of 
spatial connectivity (i.e. connected surface water has 
a similar elevation). Therefore, providing sufficient spatial 
context, especially in study areas with large water bodies, 
would enhance performance. This is also why operating 
with a tile-based approach (handling a tile that consists 
of multiple strips of LiDAR scans) is recommended rather 
than a LiDAR-strip-based operation, which potentially 
limits spatial context since each strip may not cover 
enough area. In practice, if computational resources are 
limited, it is advisable to segment the entire project area 
into smaller tiles, such as several kilometers by several 
kilometers, based on the complexity and characteristics 
of the study area. Under these conditions, the creation of 
the DSM file often consumes the most time.

6.3. Significance and limitations of the study

Traditional surface water mapping algorithms often 
require repetitive tuning of site-specific parameters or 
extensive training processes, complicating scalability. 
This challenge is especially pronounced in high- 
resolution water body mapping due to increased 
noise and difficulty in collecting high-quality training 
samples for small water bodies (Wieland et al. 2023). 

Our method addresses these issues by focusing on 
the geometric properties of water, utilizing only 3D 
coordinate observations from airborne LiDAR data. 
This approach has demonstrated robustness com
pared to other methods, eliminating the need for 
repetitive parameter tuning and training procedures.

A notable strength of our method is its ability to 
automatically generate a 3D surface water map with 
elevation details for each water body. Traditionally, 
3D hydrographic data is often produced by overlaying 
a 2D water layer from optical imagery onto a digital 
elevation model from LiDAR or SAR data, a process 
called “hydro-flattening”(Heidemann 2012). This 
approach can introduce temporal discrepancies and 
registration errors. In contrast, our method simplifies 
the process by relying solely on airborne LiDAR data, 
ensuring both accuracy and seamless integration. The 
water elevations generated are reliable, with water 
surfaces remaining flat and boundaries integrating 
perfectly with adjacent terrains. These features, com
bined with the elimination of repetitive parameter 
tuning and training, contribute to scalable and accu
rate 3D topographic mapping.

Our approach leverages knowledge of the physical 
properties of water instead of data-driven solutions. 
This not only improves mapping efficiency but also 
ensures that errors are relatively predictable and 
explainable, making them more manageable com
pared to data-driven approaches. In extensive surface 
water mapping projects, especially those including 
small water bodies, it is often infeasible to track and 
validate all outputs and errors. Data-driven solutions 
depend heavily on the quality of training samples, 
and their processes lack transparency, often resulting 
in biased and less trustworthy outputs (Tuia, Persello, 
and Bruzzone 2016). Existing literature has found that 
current surface water maps frequently underestimate 
the extent of small water bodies, likely due to insuffi
cient training samples for them and a bias toward 
having samples for larger water bodies (Mao et al.  
2022; Ogilvie et al. 2018). In this context, our method, 
which leverages the physical knowledge explicitly 
represented in remote sensing data, demonstrates 
promising potential for knowledge-based mapping 
systems in this field (Kadambi et al. 2023).

Despite these strengths, there are limitations. Our 
method identifies initial water segments based on 
point density, as surface water exhibits laser dropouts 
due to significant specular reflections (Höfle et al. 2009). 
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However, small water bodies near the nadir angle may 
exhibit high point densities over their entire extent, 
similar to non-water bodies, leading to false negatives. 
Conversely, large high-rise structures can cause 
a substantial extent of laser dropouts beyond the size 
threshold, resulting in false positives. Additionally, while 
our method assumes that connected surface water has 
similar elevation, this may not hold in areas with rapid 
flow (Milan et al. 2010), leading to potential artifacts. In 
our experiments, we calculated cell density for every 
LiDAR input tile, typically ranging from 1–10 km2, and 
did not identify significant artifacts. However, significant 
noise in LiDAR data may cause erroneous cell density 
calculations, potentially leading to artifacts, requiring 
preprocessing depending on the quality of the LiDAR 
dataset.

Regarding the experiment, it is essential to 
acknowledge that the reference data is not without 
errors. Temporal gaps and the exclusion of small 
water bodies in the reference contributed to inaccura
cies. Evaluating performance against a perfect refer
ence was infeasible due to the expansive evaluation 
of our study and the dynamic nature of water bodies. 
While we enhanced the robustness of our comparison 
by evaluating performance against widely adopted 
benchmarks and employing both large-area and tile- 
based evaluations, slight differences in accuracy may 
not definitively indicate the superiority of one 
method over another, given the imperfect nature of 
the reference. The development of extensive bench
mark datasets that include diverse small water bodies 
and multimodal remote sensing data would signifi
cantly contribute to this field.

Our method requires high-quality topographic air
borne LiDAR data, which, although increasingly avail
able (Moudr et al. 2023; Stoker and Miller 2022), is still 
limited compared to optical imagery and may not 
suffice for applications needing frequent water 
dynamics observations. Additionally, while we con
firmed our method’s robustness with various topo
graphic ALS campaigns, it may require modifications 
for other high-altitude laser scanning systems (Yi et al.  
2014), where specular reflection in water bodies may 
not be as apparent. Nevertheless, advancements in 
LiDAR sensors, particularly in their spatial and spectral 
resolution, allow LiDAR technology to play a more 
diverse role in Earth observations, including more 
detailed classification of water types (Milan et al.  
2010; Ricker et al. 2023) and other land cover classes 

(Morsy et al. 2016; Yu et al. 2021). Future research that 
integrates the geometric properties of water in LiDAR 
acquisition with additional spectral information and 
other modalities would be promising for achieving 
complementary benefits.

7. Conclusion

This paper presents a novel method for high-resolution 
surface water mapping, capturing both the extent and 
elevation of water bodies. Unlike existing approaches, 
our method relies exclusively on 3D coordinate informa
tion from ALS. This unique dependence on coordinates 
not only enables scalable surface water mapping but 
also facilitates the generation of comprehensive 3D 
topographic maps using only airborne LiDAR data. 
A key advantage is that our method eliminates the 
need for training while demonstrating robust perfor
mance, independent of repetitive site-specific para
meters. This approach ensures scalability for large-area 
mapping projects, offers resilience against potential 
training sample biases, and holds great potential to 
address the challenges of increasing noise in high- 
resolution surface water mapping.

We thoroughly validated our method over diverse 
landscapes spanning roughly 2,500 km2 of urban, 
coastal, and mountainous terrains. The results affirm 
our method’s reliability in generating surface water 
maps. Our method notably outperformed a highly 
competitive version of the widely adopted NDWI 
baseline, even when using only a default set of para
meters. Particularly, our technique excels in intricate 
urban settings with small water bodies, and in moun
tainous areas, showcasing robustness against factors 
like shadows, snow, and variable water reflectance. 
Additionally, it demonstrated effectiveness in terms of 
both accuracy and scalability, even when contrasted 
with supervised methods on optical and LiDAR data
sets. Although parameter choices in our method can 
influence the outcomes, their direct correlation to 
water extent and elevation ensures that any resultant 
errors are relatively predictable and manageable, 
especially when compared to optical image-based 
and data-driven methods.
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