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Abstract We determined the relationship between

acoustic diversity and metrics of vertical forest structure

derived from light detection and ranging (LIDAR) data in

a neotropical rainforest in Costa Rica. We then used the

LIDAR-derived metrics to predict acoustic diversity

across the forest landscape. Sound recordings were

obtained from 14 sites for six consecutive days during

dusk chorus (6 pm). Acoustic diversity was calculated

for each day as the total intensity across acoustic

frequency bands using the Shannon index and then

averaged over the 6 days at each site. A 10 m radius

around each site was used to obtain several LIDAR-

derived metrics describing the vertical structural attri-

butes of the forest canopy. Multiple linear regression

(MLR) with Akaike information criterion was used to

determine a top-ranked model with acoustic diversity as

the dependent variable and the LIDAR metrics as

independent variables. Acoustic diversity was modeled

for forested areas (where canopy height was [20 m) at

20 m resolution using coefficients obtained from the

MLR, and a hotspot analysis was conducted on the

resulting layer. Acoustic diversity was strongly corre-

lated (R2 = 0.75) with the LIDAR metrics suggesting

that LIDAR-derived metrics can be used to determine

canopy structural attributes important to vocal fauna

species. The hotspot analysis revealed that the spatial

distribution of these canopy structural attributes across

the La Selva forest is not random. Our approach can be

used to identify forest patches of potentially high acoustic

diversity for conservation or management purposes.

Keywords Forest canopy strata � Vertical canopy

gaps � Hotspot analysis � La Selva biological station �
Anselin Local Moran’s I statistic � Multiple linear

regression

Introduction

There has recently been a surge of interest in the quan-

tification of sound across landscapes (Sueur et al. 2008;
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Farina et al. 2011; Pijanowski et al. 2011a, b;

Villanueva-Rivera et al. 2011). The acoustic compo-

sition of a landscape, also called a soundscape

(Pijanowski et al. 2011a), is thought to be a function

of the physical, biological and anthropogenic features

of the local environment (Pijanowski et al. 2011b).

Several studies have analyzed the temporal and spatial

changes in sound recordings among different broad-

scale land use or vegetation cover types (Matsinos

et al. 2008; Mazaris et al. 2009; Krause et al. 2011;

Depraetere et al. 2012), and with regards to human

disturbance (Sueur et al. 2008; Francis et al. 2011; Joo

et al. 2011). However, the influence of fine-scale

changes in vegetation or forest canopy structure on the

acoustic environment has not been previously studied.

Canopy structure has been known to influence

species distributions and diversity for over half a

century (MacArthur and MacArthur 1961; Karr and

Roth 1971) and is considered a crucial component of

biodiversity management and conservation in forests

(Lindenmayer et al. 2006). Indices reflecting the

structural complexity of the forest canopy have been

found to be strongly correlated with elements of

biodiversity and species richness (McElhinny et al.

2005), especially in energy-rich landscapes (Ver-

schuyl et al. 2008) such as rainforests. Specific forest

structural attributes have also been identified as being

important for various assemblages of insects (Halaj

et al. 2000; Tanabe et al. 2001; Ishii et al. 2004; Müller

and Brandl 2009), birds (Pearman 2002; Diaz et al.

2005; Goetz et al. 2007; Clawges et al. 2008), and

anurans (Miyamoto 1982; Duellman and Pyles 1983;

Stewart 1985). Thus, vegetation or canopy structure is

likely to be strongly associated with the composition

and diversity of sounds in forested environments due

to its influence on the abundance and richness of vocal

fauna such as insects, birds and anurans.

Increased availability of fine resolution active

remote sensing data such as light detection and

ranging (LIDAR) has prompted interest in the use of

remote sensing for the characterization of vertical

forest canopy structure (Drake et al. 2002; Lefsky et al.

2002; Parker et al. 2004; Jung and Crawford 2012;

Jung et al. 2012) and more recently in the modeling of

biodiversity (Vierling et al. 2008). Several studies

have already used LIDAR derived metrics of vegeta-

tion structure along with field surveys of fauna to

model and assess habitat for multiple species at

landscape scales (Goetz et al. 2007, 2010; Clawges

et al. 2008; Müller and Brandl 2009; Müller et al.

2009). In this study, we use LIDAR-derived metrics of

vertical canopy structure and soundscape recordings to

model acoustic diversity across a tropical rainforest

landscape in Costa Rica.

We took soundscape recordings from multiple sites

across our study region during the dusk chorus when

acoustic diversity is likely to be particularly high

(Sueur et al. 2008; Villanueva-Rivera et al. 2011). The

vertical structural attributes of the forest canopy were

assessed at each site through several metrics obtained

from discrete-return LIDAR. We then determined the

relationship between acoustic frequency band com-

position (and diversity) and the vertical structure of the

canopy using multiple regression analyses. The coef-

ficients obtained from the regression analyses were

used to predict areas or patches of particularly high

acoustic diversity across the whole forest landscape at

20 m resolution. Acoustic diversity, as a natural

resource, has inherent value (Dumyahn and Pijanow-

ski 2011) and is also a good proxy for species diversity

(Sueur et al. 2008; Depraetere et al. 2012). Conse-

quently, by making high resolution maps illustrating

the distribution of acoustic diversity across our study

region, we demonstrate a modeling approach for

identifying localities within nature reserves, parks, or

other areas of interest that are of high importance for

conservation and/or further biodiversity monitoring.

Methods

Study area

This study was conducted in a lowland neotropical

rainforest between the La Selva biological station and

the Braulio Carrillo National Park in Costa Rica

(Fig. 1). The mean annual temperature and precipita-

tion at the La Selva biological station are 26 �C and

4,000 mm respectively (Sanford et al. 1994). The

elevation ranges from 30 to 140 m above sea level

with some areas being waterlogged during the wet

season (McDade et al. 1994). The fauna of La Selva is

highly diverse even when compared to other rainfor-

ests in Costa Rica and Central America (McDade et al.

1994). More than 400 bird species (Levey and Stiles

1994) and 48 amphibian species (Donnelly 1994) have

been recorded in the La Selva biological station, an

area of only 15 km2.
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Sound recordings

Sound was recorded for 10 min at every hour from

6:00 pm to 12:00 am over an approximately 3 month

period (May–August) during the wet season in 2008 at

14 sites within the study area (Fig. 1). The sites ranged

from 25 to 47 m in maximum canopy height and

represented much of the variation in elevation across

the study area (Fig. 1). Six of the sites (9–14; Fig. 1)

were located in lowland areas (\50 m in elevation)

that are seasonally waterlogged, and were thus clas-

sified as ‘swamp’ sites. After removing recordings

with microphone failures, heavy rain, and abnormal

sounds indicating some other recording error, the

longest stretch of consecutive error/rain free days

remaining was from May 15th to 20th. Because the

highest acoustic diversity was observed for the

6:00–6:10 pm recordings, which roughly coincides

with the dusk chorus at this time of the season, only the

recordings from these times for each of the six

consecutive days were included in the study.

Recordings were obtained by placing automated

sound recorders at each site (Model SM1, Wildlife

Acoustics, Concord, MA) that recorded in wav file

format with a sampling rate of 16 kHz using 16-bits.

The built-in omnidirectional microphones had a

sensitivity of -35 dBV/pa. While a sampling of up

to 16 kHz may miss some species whose vocalizations

occupy high frequencies, the sampling range in this

study is adequate to capture the vocalizations of most

insects and anurans (Gerhardt and Huber 2002) and

possibly many other animals such as mammal and bird

species.

The recordings were separated into eight frequency

bands each representing a 1,000 Hz range such that

band 1 = 0–1,000 Hz, band 2 = 1,000–2,000 Hz,

band 3 = 2,000–3,000 Hz, band 4 = 3,000–4,000

Hz, band 5 = 4,000–5,000 Hz, band 6 = 5,000–

6,000 Hz, band 7 = 6,000–7,000 Hz, and band

8 = 7,000–8,000 Hz. Several diversity indices com-

mon to community ecology have been previously

applied to sound recordings (Sueur et al. 2008;

Fig. 1 Location of the

study forest near the La

Selva biological station in

Costa Rica. Grey areas
inside map inset show

forested pixels (400 m2)

where canopy height is at

least 20 m. Pixels outside of

LIDAR coverage or with

canopy height of less than

20 m are shown in white.

Site locations where sound

recordings were obtained

are shown numbered 1–14.

Sites 9–14 are waterlogged

during the wet season (i.e.,

swamps)
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Pijanowski et al. 2011a; Villanueva-Rivera et al. 2011;

Depraetere et al. 2012). We calculated the diversity

across frequency bands at each site for each day using

an acoustic diversity index (ADI) based on the

Shannon index following Pijanowski et al. (2011b)

and Villanueva-Rivera et al. (2011) with Eq. 1:

ADI ¼
XS

i¼1

pi ln pi ð1Þ

where pi is the fraction of sound in each ith frequency

band in S number of frequency bands. ADI thus

measures how full each of the 1,000 Hz bands are

overall, which indicates the extent different acoustic

niches are occupied in the recording. Only sounds above

-50 dBFS were used in order to get rid of background

noise. The cutoff of -50 dBFS was determined after

listening to the sound recordings to ensure local fauna

vocalizations were not being inadvertently excluded.

The acoustic diversity of each site was then obtained by

averaging the ADI values at each site over the six-day

period. All sound recordings are publicly available at

http://purdue.edu/soundscapes/.

LIDAR metrics

Discrete-return airborne LIDAR data was acquired by

flying an Optech ALTM 3100EA sensor over the study

region on 26 September 2009. The ALTM 3100EA

system operates at 1,064 nm and has a maximum pulse

rate of 100 kHz, and a maximum scan angle of 50�.

The LIDAR system was flown at altitude of 1,500 m

with a scan angle of 20� (±10�) and a 70 kHz pulse

repetition frequency (PRF), which resulted in an

average point density of 3.3 points/m2.

Information regarding the vertical structural attri-

butes of the canopy at each site was obtained by

processing the LIDAR point cloud data within a 10 m

radius buffer plot around the location of the recorder.

Points were classified into ground and non-ground

classes using LAStools (Isenburg, http://lastools.org),

and the ground points were used to generate digital

terrain model (DTM) using natural neighbor interpo-

lation. The DTM was then used to convert the refer-

ence of elevation of points from the elevation above

sea level to elevation above ground. See Jung et al.

(2012) for details on LIDAR data processing for the

study region. The LIDAR point cloud data was also

processed at 20 m resolution across the whole study

region for use in modeling of acoustic diversity.

Several metrics were calculated from the LIDAR

data following Müller and Brandl (2009) and Müller

et al. (2009) including: (1) maximum canopy or tree

height (H; the height of highest LIDAR return point

within the plot), (2) canopy openness (O; sum intensity

of the ground points) which reflects the amount of light

penetration to forest floor, (3) cover of lower canopy

(sum intensity of the non-ground points between 0 and

10 m above ground) divided by canopy openness

(CL:O), (4) cover of upper canopy (sum intensity of

the non-ground points between above 10 m) divided

by canopy openness (CU:O), (5) cover of lower canopy

divided by cover of upper canopy (sum intensity of the

non-ground points 10 m and above), i.e., CL:CU,

which reflects the level of complexity and develop-

ment of mid-story trees, (6) the number of layers/strata

in entire canopy (S; defined by clusters of LIDAR

return values of at least 1 % of total intensity), (7) size

of vertical gaps in entire canopy (G; total distance

between individual canopy strata), and (8) size of

vertical gaps in lower canopy (GL; total distance

between individual canopy strata between 0 and 10 m

above ground). Equations used to calculate each

metric are shown in Table 1, and the canopy attributes

used in the equations are illustrated in Fig. 2.

Statistical analyses and modeling

cca function in the R (R Development Core Team

2009) package ‘vegan’. A canonical (constrained)

correspondence analysis (CCA) (Ter Braak 1986;

Müller et al. 2010) with the cca function in the R

package ‘vegan’ (Oksanen et al. 2012) was used to

assess the correlation between the LIDAR metrics and

acoustic frequency band composition (i.e., relative

intensity across frequency bands). The lm function in

the base stats package in R was used to conduct a

multiple linear regression (MLR) (Wilkinson and

Rogers 1973) with acoustic diversity as the dependent

variable and the LIDAR metrics and habitat (swamp or

not) as the independent variables. The independent

variables were normalized by subtracting each value

by the mean and dividing by the standard deviation

prior to MLR analyses. Because our objective was to

determine a set of environmental variables best

explaining acoustic diversity rather than to test

individual hypotheses, all combinations of indepen-

dent variables were initially considered. The models

with the combination of variables providing the lowest

1516 Landscape Ecol (2012) 27:1513–1522
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Akaike information criterion values were determined.

Because our sample size was small (n = 14), an

Akaike information criterion adjusted for sample size

(AICc) was used to avoid overfitting (Burnham and

Anderson 2004) and determine the top-ranked model.

Raster layers (with 20 m resolution pixels) were

made for each of the independent variables using the

processed LIDAR point cloud data. Only pixels of

continuous developed forest (i.e., where the maximum

canopy height within a 20 9 20 m pixel was at least

20 m) within the continuous protected area boundary

were used since they represent forest habitat with no

current human impacts such as livestock grazing. The

pixel values on each of the layers were then normal-

ized and acoustic diversity was predicted for the study

region using an equation containing the coefficients

of variables included in the top-ranked MLR model.

A hotspot analysis was conducted on the predicted

acoustic diversity values using Anselin Local Moran’s

I statistic (Anselin 1995) with the Cluster and Outlier

Analysis tool in ArcMap 10.0 (ESRI 2010). Anselin

Local Moran’s I statistic identifies clusters of pixels on

a map with significantly higher (hotspots) and signif-

icantly lower (coldspots) values than would be

expected from a random distribution. Individual pixels

(outliers) with very high values surrounded by pixels

with low values, and individual pixels with very low

values surrounded by pixels with high values are also

identified. These outliers represent locations where the

value is more than two standard deviations from the

mean value (Anselin 1995). Thus, they can be used to

single out individual pixels with exceptionally high or

low values in areas that don’t display spatial autocor-

relation, i.e., where there are no hotspots or coldspots.

Results

Acoustic diversity of the sites

Mean ADI value ranged from 0.155 to 0.242 and the

maximum ADI value on any given day ranged from

0.224 to 0.320 across the sites. The site with the

highest mean ADI (0.242; site 6; Fig. 1) and the site

with the highest maximum ADI (0.320; site 7; Fig. 1)

were both located in the interior of the study region.

Table 1 LIDAR metrics used to characterize vertical profile

of the forest canopy, and the equations used to calculate them

Metrics Canopy attributes Description

H Max Maximum canopy height

O S1 Canopy openness

CL:O S2/S1 Cover of lower canopy relative

to canopy openness

CU:O S3/S1 Cover of upper canopy relative

to canopy openness

CL:CU S2/(S2 ? S3) Cover of lower canopy relative

to upper canopy

G G1 ? G2 Total size of vertical gaps in

entire canopy

GL G1 Total size of vertical gaps in

lower canopy

S nS The number of strata in entire

canopy

An illustration of the canopy attributes is provided in Fig. 2

Fig. 2 Attributes describing the vertical profile of the forest

canopy obtained from discrete-return LIDAR data. Strata

(S) were defined as the total intensity of LIDAR return (shown

on x-axis) within portions of the vertical profile where the return

intensity was greater than 0.01 out of maximum possible

intensity of one. Gaps (G) were defined as the area between

strata, and their size was calculated as the distance between

nearest strata. The attributes were used to calculate the metrics

shown in Table 1
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Site 2, located in the southwest corner of the region

(Fig. 1) displayed both the lowest mean (0.155) and

lowest maximum (0.224) ADI values. Sites with the

second lowest mean ADI (0.177) and the second

lowest maximum ADI (0.234) were 11 and five

respectively. Nonetheless, there was a strong positive

correlation (R = 0.62) between mean ADI and max-

imum ADI across the sites based on the Pearson’s

correlation coefficient. The effect of the canopy

metrics on acoustic diversity was tested using the

mean ADI value since this index is likely to better

represent long-term acoustic diversity at the sites.

Variation in acoustic composition with canopy

structure

The separation in frequency band intensity between

sites was largely driven by the LIDAR-derived metrics

of forest canopy structure as illustrated by the CCA

(Fig. 3). Canopy structure and habitat (the presence of

swamps) explained a large proportion (60 %) of the

variation in acoustic frequency band composition

across the study sites. Low frequency bands

(0–4,000 Hz) were separated from high frequency

bands (4,000–8,000 Hz) along CCA axis 1 which was

mostly driven by the canopy structural variables H and

CU:O, CL:O and S (Fig. 3). The separation of

frequency bands along CCA axis 2 was mostly driven

by G, GL, CL:CU, O and habitat (Fig. 3).

Multiple linear regression results

The five MLR models with the lowest AICc values all

included the independent variables CL:O, CL:CU and

GL (Table 2). Four of the models, including the MLR

with the lowest AICc, included the independent

variable H (Table 2). The independent variables S

and swamp were also included in two of the models

(Table 2). O, CU:O and G were not included in any of

the MLR models (Table 2). While, the MLR model

with the lowest AICc value explained a large amount

(R2 = 0.75) of the variation in acoustic diversity

across the sites, the most variability in acoustic

diversity was explained by the MLR with the fifth

lowest AICc, which included six variables (Table 2).

The MLR with the four independent variables H,

CL:O, CL:CU and GL was selected as the top-ranked

model because its AICc value was over five lower than

the next best model (Table 2).

According to the top-ranked model, acoustic

diversity increased most strongly with GL and CL:CU

as indicated by their coefficients (estimates) (Table 3).

A moderate increase in acoustic diversity with CL:O,

and a moderate to weak increase in acoustic diversity

with decreasing H was also observed (Table 3).

Spatial modeling of acoustic diversity at landscape

level

Acoustic diversity (AD) was predicted using coeffi-

cients from the top-ranked MLR with equation 2.

AD ¼ � 0:0118 Hð Þ þ 0:0243 CL:Oð Þ
þ 0:0733 CL:CUð Þ þ 0:0894 GLð Þ ð2Þ

Hotspots, i.e., clusters of pixels with high values,

were generally concentrated in the north and north-

west corner, along the eastern edge, and in several

large patches scattered throughout the interior of the

study region (Fig. 4). Hotspots were generally sur-

rounded by pixels with average (non-significant)

values and few pixels with low outlier values (i.e.,

individual pixels with low values surrounded by high

values) (Fig. 4). Forest gaps, i.e., pixels where max-

imum canopy height was less than 20 m, were also

found within close proximity of hotspots, particularly

Fig. 3 Canonical correspondence analysis (CCA) showing the

influence of LIDAR-derived metrics of forest canopy structure

(described in Table 1) and the presence of nearby swamps on the

intensity of sound within eight acoustic frequency bands (each

representing a 1,000 Hz range) recorded across 14 sites near the

La Selva biological station
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in the northwest corner and along the eastern edge.

Coldspots (i.e., clusters of pixels with low values) and

high value outliers (i.e., individual pixels with high

values surrounded by low values) were common

throughout the study region (Fig. 4). In fact, high

value outliers were almost exclusively located

between coldspots (Fig. 4).

Discussion

Our results suggest that the acoustic diversity observed

at any given point in the La Selva forest environment

is strongly linked to the vertical structure of the local

canopy. Seventy-five percent of the variation in

acoustic diversity was explained by only four LIDAR

metrics and up to 85 % was explained when habitat

(the presence of swamps) was taken into account.

However, the higher R-squared obtained by including

the swamp variable may be due to overfitting since the

model that included habitat had a relatively high AICc

value compared to the top ranked model. Several other

studies have demonstrated the high utility of LIDAR

data in modeling biodiversity in temperate forests

(Goetz et al. 2007, 2010; Clawges et al. 2008; Müller

and Brandl 2009; Müller et al. 2009). Canopy

structural attributes are a stronger predictor of animal

species diversity than even plant species composition

(MacArthur and MacArthur 1961) as demonstrated by

a recent study in central European forests (Müller et al.

2010). In this study, we show that LIDAR-derived

metrics of vertical canopy structure are useful for

modeling acoustic ‘‘as well as species diversity’’ in

structurally complex forest environments.

While the variation in acoustic frequency band

composition across our study sites was driven by several

metrics of canopy structure, structural attributes related

to the size of gaps and the proportion of cover in the

lower canopy (0–10 m from the forest floor) were the

strongest predictors of acoustic diversity. Our results

further suggest that a forest patch that has large gaps

while at the same time containing dense foliage in the

lower canopy, and a relatively open upper canopy, will

harbor the greatest diversity. Clawges et al. (2008) also

observed the highest bird species diversity where the

canopy contained relatively more foliage near the forest

floor in North American pine/aspen stands. In energy

rich environments such as rainforests, animal species

richness is predicted to decrease as the overstory shades

out and reduces the structural complexity in the lower

parts of the canopy (Verschuyl et al. 2008). Thus, vocal

fauna, particularly birds, may benefit from a more

developed and structurally complex mid and understory

Table 2 Combinations of variables providing the five multiple linear regression (MLR) models with the lowest Akaike information

criterion adjusted for sample size (AICc) ordered from left to right

AICc = -69

Di = 0

R2 = 0.75

AICc = -64

Di = 5

R2 = 0.80

AICc = -63

Di = 6

R2 = 0.48

AICc = -62

Di = 7

R2 = 0.75

AICc = -59

Di = 10

R2 = 0.85

H x x x x

O

CL:O x x x x x

CU:O

CL:CU x x x x x

G

GL x x x x x

S x x

Swamp x x

The adjusted R-squared (R2) is also shown along with the AICc and Delta AICc (Di) for each MLR model

Table 3 Coefficients of the top-ranked multiple linear

regression (MLR) model

Est. SE P

H -0.0118 0.0034 0.0070

CL:O 0.0243 0.0051 0.0011

CL:CU 0.0733 0.0150 0.0009

GL 0.0894 0.0158 0.0003

The estimate (Est.), standard error (SE) and P value (P) are

shown for all variables in the model
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resulting from increased light penetration through the

upper canopy.

Acoustic diversity is a good proxy for overall faunal

richness, at least of vocal fauna (Depraetere et al.

2012), because the vocalizations of different species of

animals are known to generally occupy different

acoustic frequencies (Sueur 2002; Sueur et al. 2008;

Pijanowski et al. 2011a, b). However, we do not seek

to model species diversity in this study. It has recently

been argued that soundscapes are a natural resource in

themselves, and landscapes should be managed in a

way as to conserve their acoustic diversity (Dumyahn

and Pijanowski 2011). Accordingly, our objective is to

develop an approach to mapping hotspots of acoustic

diversity for the purpose of guiding soundscape

conservation efforts in structurally complex forests.

Our hotspot analyses show that the spatial distribution

of canopy structural attributes important for acoustic

diversity across the La Selva forest is not random.

While individual pixels with structural attributes

likely to support high acoustic diversity (i.e., high

value outliers) are distributed throughout the region,

several large patches of forest supporting high diver-

sity (hotspots) also exist. The extensive distribution of

high outlier values among patches of forest with low

acoustic diversity (coldspots) illustrates the

heterogeneity in habitat supporting vocal fauna

throughout this neotropical forest which is likely to

be a reflection of the highly dynamic nature of the La

Selva forest canopy (Kellner et al. 2009).

Both the identification of large patches and indi-

vidual pixels with high habitat value can be useful for

focusing conservation efforts or management prac-

tices within nature reserves, parks, cities, or other

areas of interest. While hotspots are commonly used to

identify areas important to the biodiversity of a larger

region or the globe (Olson and Dinerstein 1998; Myers

et al. 2000; Werner and Buszko 2005), the ability to

identify outlier pixels at smaller spatial scales also

holds potential for use in wildlife conservation or

management based research. For example, the loca-

tion of such outliers can be used to pinpoint where the

establishment of biodiversity monitoring or surveying

plots will be most effective in parts of the landscape

where hotspots are not present or the spatial distribu-

tion of values is random.

Conclusion

We demonstrated the use of LIDAR-derived metrics

and sound recordings for identifying canopy structural

Fig. 4 Forested areas in La Selva (shown in grey and black)

predicted to support high and low acoustic diversity. Forest

areas are where maximum canopy height (within 400 m2 pixels)

is [20 m. Hotspots (clusters of pixels with high values),

coldspots (clusters of pixels with low values), and outliers

(individual pixels with especially high or low values) are

significantly higher or lower (P value \ 0.05) than surrounding

pixel values based on Anselin Local Moran’s I statistic
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attributes supporting high acoustic diversity in a

neotropical forest environment. What is unique about

this study is that it integrates two high density data

sources (i.e., LIDAR and soundscape recordings) for

high resolution modeling over large areas. The study is

also the first to show that the composition of acoustic

frequency bands and acoustic diversity are strongly

linked with the vertical structure of the local canopy in

forested environments. By coupling LIDAR with

acoustic data we were also able to develop a frame-

work for identifying individual pixels as well as

clusters of pixels (hotspots) within forests with canopy

structural attributes that are likely to be important for

vocal fauna. Given the recent interest in soundscape

conservation and the relative ease with which LIDAR

and sound data can be obtained at large scales, our

approach holds high potential for landscape level

assessment of acoustic conservation value within

forested environments.
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