
1. Introduction

LiDAR (Light Detection And Ranging) provides

information on 3D coordinates of the Earth’s surface

by actively sending out laser pulses and performing

range measurements from the sensor. The range

measurements are calculated by measuring the flight

time of the laser pulse, and the time measurements

are combined with the location (obtained from GPS

(Global Positioning System)) and the attitude

(obtained from IMU (Inertial Measurement Unit))

information of the system at the time of laser shot.

Early LiDAR systems were limited to record small

number of returns from the back scattered energy due

to the hardware limitation. The volume of data

acquired by the LiDAR system is enormous due to its

high pulse repetition rate (PRF) of the system, and it

was not feasible to record a whole spectrum of the

return signal in the early systems. For this reason,

early LiDAR systems extracted the location of peaks

from the return signals, and the recorded peak

locations were transformed into points with 3D

coordinates information. However, recent advances

in LiDAR hardware now enabled to record back
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scatter energy which is also called a LiDAR

waveform. The full waveform LiDAR system has

recently attracted considerable attention of

researchers since detailed information on the vertical

structure of the targets can be better represented by

the LiDAR waveform data than by the traditional

discrete return LiDAR data. Various full waveform

LiDAR systems have been developed since 1980s.

The first LiDAR full waveform digitizer system was

developed in the 1980s for bathymetric applications,

and topographic full waveform profiling digitizer

systems began to be marketed in the 1990s (Mallet

and Bretar, 2009). More recently, the Laser

Vegetation Imaging Sensor (LVIS) was developed as

a prototype for the Vegetation Canopy LiDAR

(VCL) mission (Blair et al., 1999). In addition to the

airborne full waveform LiDAR system, the Ice,

Cloud and Land Elevation Satellite (ICESat), a

spaceborne large footprint full waveform LiDAR

system, was launched in 2003 and operated until

recently (Zwally, 2002). Even though full waveform

LiDAR data provide high resolution vertical structure

information, the high dimensional LiDAR waveform

data inherently present challenges in processing the

data. One of the most critical steps in processing the

waveform data is LiDAR waveform decomposition,

and it refers to the process of decomposing a return

waveform into a mixture of components which are

then used to characterize the original waveform data

(Fig. 1). The LiDAR waveform decomposition plays

an important role in LiDAR waveform processing

since the resulting decomposed components are

assumed to represent reflection surfaces within

waveform footprints and the decomposition results

ultimately affect the interpretation of LiDAR

waveform data.

w(t) = ak exp{_ } + e (Eq. 1)

Among various kinds of mixture models, a

Gaussian mixture model (Eq. 1) is the most common

statistical model for the waveform decomposition

process, and its parameters include the recorded time

by the digitizer (t), mixing coefficients (ak) and the

mean (mk), standard deviation (sk) of each

component, and background noise (e). Decomposing

a waveform into distinct components by fitting a

mixture of Gaussian distributions is an unsupervised

machine learning problem which involves two

separate, but related problems; i) determining the
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Fig. 1.  Example LiDAR waveform and its decomposition results; A solid blue line in (a) represents a received waveform, and solid
red lines in (b) represents the decomposed components.
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number of components represented in the waveform,

and ii) estimating the parameters of the associated

Gaussian distributions. Estimating parameters of a

Gaussian mixture depends heavily on the estimated

number and the initial location of the Gaussian

components since the parameter estimation problem

does not have a closed form solution and must be

solved iteratively. Therefore, it is critical to obtain a

good estimate of the number of components and good

initial estimates of the parameters of the individual

components of the Gaussian mixture in order to

achieve rapid convergence to an optimal solution.

Researchers have decomposed the LiDAR

waveform into a mixture of Gaussians using various

approaches. Hofton et al. (2000) utilized inflection

points obtained from the second derivatives of the

smoothed waveforms to determine the number of

components in the mixture and initial parameter

estimates. They employed non-linear least squares

methods such as Gauss Newton and the Levenberg-

Marquardt algorithms to obtain optimal parameter

estimates from the initial estimates. Persson et al.

(2005) utilized local maxima points obtained from the

first derivatives of the smoothed waveform to

determine the number of components in the mixture

and the initial parameter estimates, followed by

optimization via the EM (Expectation-Maximization)

algorithm. The EM algorithm is a well-known

maximum likelihood estimation method which

alternates between an expectation (E) step and a

maximization (M) step. The E step computes the

expectation of the likelihood function evaluated from

the currently estimated parameters, and the M step

updates parameters so that the updated parameters

maximize the likelihood function found on the E step

(Dempster et al., 1977). Chauve et al. (2007)

investigated the zero crossing points of the first

derivatives of the smoothed waveform in order to

estimate initial number of components and derive

initial parameter estimates, and then they applied a

non-linear least squares method to optimize

parameters of different kinds of Gaussian mixture

distributions. In addition to non-linear least squares

and the EM algorithms, a greedy EM algorithm has

been proposed to estimate the density of a

multivariate mixture of Gaussians (Vlassis and Likas,

2002). The greedy EM algorithm converges faster

than the EM algorithm since parameters from the

previous step are fixed and only parameters for the

current step are estimated at a given time.

Although significant research has focused on

developing waveform decomposition methods,

several issues are still remained to be solved. In

previous studies, the number of components in the

mixture model was estimated before the parameter

optimization step, then non-linear least squares or the

EM algorithms were applied to derive final parameter

estimates of components. Additional component may

be added to the mixture when the estimated mixture

model generated from the optimized parameters does

not satisfy specified criteria. However, these

approaches are problematic as the process of

estimating the number of components is not only time

consuming, but also not robust and tends to suggest a

larger number of components than is required due to

the inherent noise embedded in the waveform data,

especially when the waveform is complex. There are

no means of reducing the number of components

before the parameter optimization process starts,

which sometimes causes over-fitting and long

convergence times. The main objective of this study

is to develop a new sequential algorithm which

decomposes a waveform into a mixture of Gaussians

rapidly and accurately, with a focus on application to

complex waveforms. The proposed approach is based

on an effective utilization of a region growing

algorithm in order to derive initial estimates of the

new components, and a non-linear least squares
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algorithm, a greedy EM algorithm, the EM algorithm,

and a sequential EM algorithm for parameter

optimization.

2. Methods

The proposed decomposition algorithm utilizes

sequential approach, where the goal is to reduce

computation, but provide a good approximation to the

waveform. The proposed algorithm starts with a

single component in the mixture, and an additional

component is added to the mixture until stopping

criteria are satisfied (Fig. 2). For parameter

optimization, different kinds of parameter estimation

techniques are utilized depending on complexity of

the waveform (Fig. 2). For simple waveforms or well

separated mixtures, simple non-linear least squares

(Gauss-Newton or Levenberg-Marquardt algorithms)

and a greedy EM algorithm are fast and may provide

adequate fits. However, convergence or appropriate

fits may not be achieved for more complex

waveforms, so the more robust EM and sequential

EM methods are applied to complex waveforms.

Since a new component is sequentially added to

the mixture and the parameter optimization is

performed by iterative approach, initial parameters of

the newly added component need to be estimated

before the parameter optimization step. A region

growing algorithm is utilized to derive the initial

parameter estimates for the component that is

introduced into the mixture. The region growing

algorithm uses location of the maximum response

value of the waveform as a seed point to initiate the

region growing process. The region starts growing

from the seed point to the left and the right

simultaneously, and terminates when the response

value is smaller than a specified threshold value. This

region growing process prevents the cluster from

including the portion of the waveform comprised of

only noise. Once the region stops growing, initial

parameters for the new component are estimated

from the grown region and input to one of the curve

fitting algorithms: non-linear least squares, greedy

EM, or sequential EM. The optimized parameters are

then used to reconstruct the corresponding Gaussian

component, and the reconstructed component is

subtracted from the waveform. If an additional

component is required in the mixture, the remaining

waveform is used to drive initial parameter estimates

of the new component and the above process is

repeated until the stopping criteria are satisfied.

Since the proposed algorithm is sequential,

stopping criteria are required to determine when to

stop adding an additional component to the mixture.
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Fig. 2.  Flow chart of the sequential waveform decomposition
algorithm (i: improvement factor, ti: improvement factor
threshold value).



An improvement factor (IMP) which is based on the

sum of squared error (SSE) value is used as one of

stopping criteria in this study. The IMP represents the

goodness of the fit. The SSE is computed as the sum

of squared differences between the original and the

estimated waveforms (Eq. 2), where i represents

index term of the waveform, n represents the total

number of terms in the waveforms, and k represents

number of components in the current mixture. The

initial SSE (SSE0) assumes a value of zero for the

estimated waveform for all the values of time (Eq. 3).

Then, the IMP with k Gaussian components is

defined as the ratio of difference between incremental

IMP when compared to IMPk-1 and incremental IMP

when compared to IMP0 (Eq. 4). The IMP is used to

determine whether the waveform approximation is

adequate to justify terminating the decomposition

process.

SSEk =   (fi _ f̂ k,i)2 (Eq. 2)

SSE0 =   (fi _ 0)2 (Eq. 3)

IMPk = (Eq. 4)

1) Preprocessing

Waveforms recorded by LiDAR systems

inherently include noises due to hardware limitation

of the sensor and interactions between the laser pulse

and atmosphere. In order to improve decomposition

results and reduce computational requirements of the

decomposition process, preprocessing is performed

over waveforms, and it discriminates the “signal”

from the “noise.” Statistics of background noise such

as mean (mn) and standard deviation (sn) are

estimated from the “non-signal” part of the waveform

and employed to threshold the waveform and extract

the “signal” part, which is then used in the

decomposition stage. First, the mn value is subtracted

from the waveform in order to remove the

background noise from the waveform. Second, the

first and last location of the waveform whose

response value is greater than 3sn are identified, and

the part of waveform between the first and the last

locations is extracted as the “signal.” The extracted

signal is then fed into the sequential waveform

decomposition algorithm. The pre-processing step

interactively determines which part of the waveform

represents the signal, and reduces computational

requirements by lowering the dimension of the input

data to the decomposition algorithm.

2) Sequential waveform decomposition

Two non-linear least squares fitting algorithms -

the Gauss-Newton and the Levenberg-Marquardt -

are used to fit the first component. Initial parameters

for the component are estimated by the region

growing algorithm. The Gauss-Newton based

algorithm is employed first since it converges faster

than the Levenberg-Marquardt algorithm. However,

if the Gauss-Newton algorithm diverges, the

optimization proceeds using the Levenberg-

Marquardt algorithm. The Levenberg-Marquardt

algorithm is applied later since the Levenberg-

Marquardt algorithm is known to be more robust, but

it requires more computation than the Gauss-Newton

algorithm. After fitting the first component, the

improvement factor is computed and compared to the

specified threshold for IMP (ti). If it is exceeded the

specified ti, the waveform decomposition process

terminates, and the optimized parameters are reported

as final results. Otherwise, a new component is added

to the current mixture using the region growing

algorithm, and a greedy EM algorithm is utilized to

optimize parameters for the added component. The

greedy EM algorithm provides rapid convergence

because it fixes the estimated mean and standard

IMPk
_ IMPk-1

IMPk
_ IMP0

NS
k=1

NS
k=1
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deviation of the previously estimate components and

only updates the amplitude of previously added

components and parameters of the current

component. This process is repeated until the

resulting IMPk is greater than ti or a number of

components in the mixture is smaller than the

specified maximum number of components (Nmax).

Parameters estimated by the greedy EM algorithm are

reported as final results if no more components are

required in the mixture. Otherwise, the process

proceeds to the next stage which utilizes the full EM

algorithm.

The EM algorithm is initiated using estimated

parameters from the greedy EM algorithm without

adding a new component to the current mixture. The

greedy EM algorithm does not allow updating

parameters of previously added components other

than the amplitudes of the components in the

optimization process, while the EM algorithm

introduces more flexibility in the optimization

process by allowing updating all parameters

(amplitude, mean, and standard deviation) of every

component in the mixture. For this reason, the EM

algorithm is more robust, but requires more

computation than the greedy EM algorithm. After

applying the EM algorithm, the resulting IMPk

determines whether a new component should to be

added to the mixture. If IMPk is smaller than ti, an

additional Gaussian component is added to the

mixture using the sequential EM algorithm. The

sequential EM algorithm derives initial parameters by

applying the region growing algorithm to the

remaining waveform, and applies the EM algorithm

with the additional components. This process is

repeated until the IMPk is greater than ti, or the

maximum number of components allowed in the

mixture (Nmax) is reached.

3. Experimental Results and Discussion

In order to investigate the performance of the

proposed algorithm, the proposed algorithm was

applied to the Ice, Cloud and Land Elevation Satellite

(ICESat) waveform data, and the corresponding

decomposition results were compared with the

GLA14 products whose decomposition results were

generated by the decomposition algorithm proposed

by Hofton et al. (2000).

1) Experimental data

The ICESat is a spaceborne full waveform LiDAR

system. It was launched January 13, 2003, and its

primary goal was to measure elevation changes in the

arctic and the Antarctic in order to understand how

changes in ice-sheet mass balance impact global sea

level changes. In addition to this objective, the

ICESat mission also enables precise measurement of

land topography and provides information on

vegetation structure by recording and processing the

Geoscience Laser Altimeter System (GLAS)

waveforms (Zwally et al., 2002). The GLAS

instrument on ICESat provides various data products,

of which GLA01, GLA06 and GLA14 are used in

this study. The GLA01 Level 1 product provides the

transmitted and received waveform from the

instrument. The GLA06 Level 1 product mainly

intended for providing surface elevation, but also

includes the saturation index of waveform which

implies the number of saturated gates. The GLA14

Level 2 product is intended to represent the potential

complexities of returns from land. The GLA14

product reports the number of components in a

mixture and the estimated parameters of each

Gaussian component obtained from the

decomposition algorithm proposed by Hofton et al.

(2000). The GLA14 product fits a mixture of a

maximum of 6 Gaussian components, and provides

Korean Journal of Remote Sensing, Vol.26, No.6, 2010
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the associated estimated parameters of the estimated

components. From these estimated parameters, the

Gaussian approximation of the waveform can be

reconstructed in the direction of the laser pointing

vector. In this study, the GLA01 products were used

as main input to the proposed algorithm, while

saturation index values from the GLA06 products

were used to remove saturated waveforms from the

experiment. In order to compare the waveform

decomposition performance of the proposed

algorithm with the previously proposed algorithms,

results from the GLA14 product were compared with

the decomposition results of the proposed algorithm.

22 GLA01 products were pulled out from the

National Snow and Ice Data Center (NSIDC) web

site. Each GLA01 product contains 64,400

waveforms, and 1,417,200 waveforms were included

in the 22 GLA01 products initially (Table 1).

However, waveforms from GLA01 products included

not only waveforms targeted over land, but also the

waveforms targeted over the ice, and the ocean. Since

the goal of this study is to develop a new LiDAR

waveform decomposition algorithm with a focus on

complex waveforms, waveforms that were targeted

over the ice and the ocean were removed from the

experiment. In addition to filtering out waveforms

that are not targeted over the land, noisy waveforms

were also removed from the analysis. Decomposition

results from noisy waveforms do not produce

meaningful information, and the noisy waveforms

only cause long convergence time. Two criteria were

used to extract noisy waveforms from the GLA01

A Sequential LiDAR Waveform Decomposition Algorithm
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Table 1.  List of GLA01 products used in the study and number of waveforms in the product (Nw), and number of waveforms selected
(Nw,selected) for later analysis

Index File Name of GLA01 Product Nw Nw,selected

1 GLA01_028_2111_001_1343_4_01_0001.DAT 64,400 1,512

2 GLA01_028_2111_002_0280_2_01_0001.DAT 64,400 8,028

3 GLA01_028_2111_003_0280_2_01_0001.DAT 64,400 7,336

4 GLA01_028_2113_001_1343_4_01_0001.DAT 64,440 1,860

5 GLA01_028_2113_002_0280_2_01_0001.DAT 64,440 10,694

6 GLA01_028_2115_001_1343_4_01_0001.DAT 64,400 4,251

7 GLA01_028_2115_002_0167_4_01_0001.DAT 64,400 12,395

8 GLA01_028_2115_002_0354_2_01_0001.DAT 64,440 8,326

9 GLA01_028_2115_002_1343_4_01_0001.DAT 64,400 4,388

10 GLA01_028_2115_003_0280_2_01_0001.DAT 64,440 4,701

11 GLA01_028_2117_001_1343_4_03_0001.DAT 64,400 1,768

12 GLA01_028_2117_002_0048_4_02_0001.DAT 64,400 5,159

13 GLA01_028_2117_002_0280_2_02_0001.DAT 64,440 11,156

14 GLA01_028_2117_002_0354_2_02_0001.DAT 64,400 13,421

15 GLA01_028_2119_001_1343_4_02_0001.DAT 64,440 7,790

16 GLA01_028_2119_002_0048_4_02_0001.DAT 64,440 8,469

17 GLA01_028_2119_002_0167_4_06_0001.DAT 64,400 6,336

18 GLA01_028_2119_002_0405_4_02_0001.DAT 64,400 6,433

19 GLA01_028_2121_002_0048_4_03_0001.DAT 64,400 8,177

20 GLA01_028_2121_002_0220_2_02_0001.DAT 64,440 6,760

21 GLA01_028_2121_002_0280_2_02_0001.DAT 64,440 12,782

22 GLA01_028_2121_002_0405_4_02_0001.DAT 64,400 7,927

Sum 1,417,200 159,669

Index File Name of GLA01 Product Nw Nw,selected



products. One criterion was the saturation index from

GLA06 products, and any waveform whose

saturation index is greater than 0 was removed from

the experiment. Second criterion was based on the

maximum response of the waveform. One

characteristics of noisy waveform is its low

maximum response value. When waveforms are

reflected over targets without interference, the

maximum response value of the waveform is usually

much higher than the noisy part of the waveform.

ICESat waveforms are digitized in 8-bit resolution,

and the response values range from 0 to 255. Any

waveform whose maximum response is smaller than

50 was considered to be a noisy waveform and

removed from the experiment. Based on the above

selection scheme, 159,669 waveforms among

1,417,200 waveforms were selected and used in the

experiment (Table 1).

2) Decomposition results

The proposed LiDAR waveform decomposition

algorithm was applied to 159,669 waveforms selected

in the data preparation stage. User specified threshold

values of ti = 0.95 and Nmax = 6 were used in this

study. In addition to comparing decomposition results

of overall waveforms, it is also important to compare

the decomposition results depending on whether

waveforms are simple or complex since both the

proposed algorithm and the previously developed

decomposition algorithm are expected to perform

well for simple waveforms. Waveforms were

classified into two classes based on the

decomposition results of the GLA14 products.

Waveforms that resulted in a single component in the

decomposition results from the GLA14 products

were classified as a simple waveform class, and the

number of simple waveforms is listed in the third

column (Nw,smp) of Table 2. Similarly, waveforms

that resulted in more than one component in the

decomposition results from the GLA14 products

were classified a complex waveform class, and the

number of complex waveforms is listed in the fourth

column (Nw,cmp) of Table 2. Initially, it was expected

that all waveforms targeted over the land would show

up in the GLA14 products, but it turned out that

several waveforms that were selected in the data

preparation stage were missing from the GLA14

products. This was because not all waveforms

targeted over the land actually hit the land, especially

when waveforms are targeted close to the boundary

between the land and the ocean or the ice. The

number of missing waveforms selected in the data

preparation stage but missing in the GLA14 products

is listed in fifth column (Nna) of Table 2, and the

missing waveforms were not included in the
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Table 2.  Description of waveform decomposition results

Index Nw,selectedNw,smp Nw,cmp Nna Nf

1 1,512 458 881 87 86

2 8,028 4,375 3,249 103 301

3 7,336 3,537 2,938 184 677

4 1,860 825 381 324 330

5 10,694 3,488 5,086 149 1,971

6 4,251 2,211 875 633 532

7 12,395 3,789 3,450 3,112 2,044

8 8,326 3,060 3,563 1,398 305

9 4,388 2,153 1,123 893 219

10 4,701 1,700 2,190 91 720

11 1,768 349 1,272 60 87

12 5,159 3,013 1,054 632 460

13 11,156 5,930 5,081 81 64

14 13,421 6,467 5,926 834 194

15 7,790 3,214 3,169 567 840

16 8,469 4,063 2,096 1,845 465

17 6,336 2,558 1,774 1,703 301

18 6,433 2,570 1,923 1,228 712

19 8,177 3,356 2,215 1,902 704

20 6,760 2,371 3,474 387 528

21 12,782 6,288 6,294 47 153

22 7,927 3,095 3,458 691 683

Sum 159,669 68,870 61,472 16,951 12,376

Index Nw,selected Nw,smp Nw,cmp Nna Nf



comparison. Even though noisy waveforms were

filtered out from the data preparation stage, some of

noisy waveforms were still remained, and some

waveforms were not successfully decomposed for

this reason. In order to minimize effects the noisy

waveforms in the comparison, only waveforms that

were successfully decomposed by both the proposed

algorithm and the GLA14 products were included in

the comparison. It was considered as a decomposition

failure when 1) the estimated parameters contain any

value (NaN), or 2) the resulting IMP value is

negative. The number of waveforms which are not

successfully decomposed either in the GLA14

products or by the proposed algorithm is listed in the

sixth column (Nf) of Table 2.

3) Decomposition results comparison

Decomposition results of the proposed algorithm

and the GLA14 products were compared in term of

the average number of components used in the

decomposition process and the resulting IMP value.

In order to compare the decomposition performance

of algorithms depending on complexity of

waveforms, two different comparisons were

conducted in this study. One comparison focused on

the decomposition results when all waveforms

(Nw,smp + Nw,cmp) were included in the comparison;

the other comparison focused on the decomposition

results when only complex waveforms (Nw,cmp) were

included in the comparison.

Fig. 3 shows an average number of components

used in the decomposition process, and it revealed

that the proposed algorithm utilized a smaller number

of components for both comparisons, while the

proposed algorithm utilized much smaller number of

components to decompose complex waveforms. Fig.

4 shows an average IMP value of the proposed

algorithm and the GLA14 products, and it indicated

that resulting mean IMP value of the proposed

algorithm was greater than the GLA14 products for

both comparisons, while the difference was increased

when only complex waveforms were included in the

comparison. In the comparison with all waveforms,

the proposed algorithm utilized 29.69 % less number

of components to decompose waveforms, while the

resulting average IMP is 12.11 % higher than the

GLA14 products. In the comparison with only

complex waveforms, the proposed algorithm utilized

A Sequential LiDAR Waveform Decomposition Algorithm
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Fig. 3.  Average number of components used in the
decomposition process (SA(all): Results from the
proposed sequential algorithm when all waveforms
were included, GLA14(all): Results from GLA14
products when all waveforms were included, SA(cmp):
Results from the proposed algorithm when only
complex waveforms were included, GLA14(cmp):
Results from GLA14 products when only complex
waveforms were included in the comparison).

Fig. 4.  Average IMP value (SA(all): Results from the proposed
sequential algorithm when all waveforms were
included, GLA14(all): Results from GLA14 products
when all waveforms were included, SA(cmp): Results
from the proposed algorithm when only complex
waveforms were included, GLA14(cmp): Results from
GLA14 products when only complex waveforms were
included in the comparison).



40.7 % less number of components, while the

resulting average IMP is 19.75 % higher than the

GLA14 products. In general, the proposed algorithm

utilized a smaller number of components to fit

Gaussian mixture over the waveforms than the

GLA14 products, while it provides better fit to the

waveforms. These results indicated that the proposed

algorithm outperforms the previous waveform

decomposition algorithm in general and its

performance improves as complexity of waveforms is

increased.

4. Conclusion

LiDAR waveform decomposition plays an

important role in LiDAR data processing since the

resulting decomposed components are assumed to

represent reflection surfaces within waveform

footprints and the decomposition results ultimately

affect the interpretation of LiDAR waveform data.

The previous approaches estimated the number of

components in the mixture before the parameter

optimization step, and it tended to suggest a larger

number of components than is required due to the

inherent noise embedded in the waveform data. A

new LiDAR waveform decomposition algorithm

based on the sequential approach has been proposed

in this study and applied to the ICESat waveform

data. The experimental results indicated significant

improvement over the previous approaches. The

proposed algorithm utilized a smaller number of

components to decompose waveforms, while the

resulting IMP value is higher than the GLA14

products. The experimental also indicated that the

improvement was increased when waveforms are

complex. The proposed algorithm appears to be a

promising direction for processing waveform data

acquired over land by ICESat. Potential

improvements would be even more significant for the

future ICESat II mission, which will require

processing of much more data due to longer duty

cycles for the sensor. The proposed approach also has

potential for adaptation to analysis of waveform data

collected by current airborne scanning LiDAR

systems, where the number of waveforms is

enormous and the processing requirements are

prohibitive.
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