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Core Ideas

•	 UAS captured increased genetic variation com-
pared with manual terminal height.

•	 There were small significant differences in ground 
filtering methods to extract plant structure.

•	 Higher resolution did not improve imagery infor-
mativeness with regard to plant height.

•	 Logistic function provides informative pheno-
types for temporal maize growth.

•	 Correlation and prediction accuracy of grain yield 
increased by ~20% with UAS heights.
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irrigated, delayed planting Genomes to Field trial; HCDH, high canopy density hybrid study site; HRI, 
hierarchical robust interpolation; LCDH, low canopy density hybrid study site; MAE, mean absolute 
error; MCDI, medium canopy density inbred study site; PHTTRML, manually measured terminal plant 
height; RMSE, root mean squared error; SfM, structure from motion; UAS, unmanned aerial system; 
UAV, unmanned aerial vehicle. 
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Weekly unmanned aerial system (UAS) imagery was collected over the College Station, 
TX, 2017 Genomes to Fields (G2F) hybrid trial, across three environmental stress treat-
ments, using two UAS platforms. The high-altitude (120-m) fixed-wing platform 
increased the fraction of variation attributed to genetics and had highly repeatable 
(R > 60%) height estimates, increasing the genetic variance explained (10–40%) over 
traditional terminal plant height measurement (PHTTRML ?30%), as well as over the 
low-altitude rotary-wing UAS platform (10–20%). A logistic function reduced the dimen-
sionality (>20 flights) of each UAS dataset to three parameters (inflection point, growth 
rate, and asymptote) and produced a more robust predictive model than independent 
flight dates, effectively summarizing (R2 > 0.98) the UAS flight dates. The logistic model 
overcame the need to use specific flight dates when comparing different environments. 
The UAS height estimates (r = 0.36–0.48) doubled the correlations to grain yield in this 
G2F experiment compared with PHTTRML (r = 0.23–0.28). Parameters of the logistical 
function achieved equivalent correlations (r = 0.30–0.46) to individual flight dates (r = 
0.36–0.48), improving grain yield prediction by ?400% (R2 = 0.25–0.34) over PHTTRML 
(R2 = 0.06–0.08). Incorporating other UAS-derived parameters beyond plant height may 
allow yield to be accurately predicted before maturity, speeding breeding programs. 
A new public R function to generate ESRI shapefiles for plot research is also described.

Genetic variation of terminal plant height (PHTTRML) in maize (Zea mays L.) 
is a highly heritable trait (Anderson et al., 2018; Li et al., 2016b; Mahan et al., 
2018; Peiffer et al., 2014; Wallace et al., 2016) and is relatively easy to pheno-

type, for instance measuring from the ground to the tip of a tassel on a representative 
plant. However, the labor and time required to collect data is still resource constrained, 
and height measurements collected in maize research programs are generally taken only 
once, when the plants have reached maximum growth after the completion of flowering.

Plant height is valuable not only as a phenotype in and of itself, but it has also been 
shown to be predictive of maize grain yield in some regions and environments (Katsvairo 
et al., 2003; Machado et al., 2002; Mallarino et al., 1999; Yin et al., 2011). Barrero Farfan 
et al. (2013) observed positive correlations (r = 0.46) between PHTTRML and grain 
yield within the semiarid stressed environment of Texas, less correlation (r = 0.19) in the 
irrigated High Plains, and the highest correlations by combining all Texas environments 
(r = 0.61). Yin et al. (2011) demonstrated that V10/V12 plant height was highly predic-
tive (R2 = 0.26–0.87) of grain yield using an exponential regression model. Previous 
work has shown that early season plant height can be decoupled from PHTTRML and has 
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been hypothesized to offer additional insight into yield (Mallarino 
et al., 1999; Pugh et al., 2018). The relative ease of plant height 
measurements via remote sensing in the field (Chang et al., 2017; 
Chu et al., 2018; Han et al., 2018; Malambo et al., 2018) and the 
potential to predict yield at earlier time points (i.e., before harvest) 
makes plant height an excellent case study for phenotypic data col-
lection via unmanned aerial systems.

Unmanned aerial systems (UAS) include unmanned aerial 
vehicles (UAV) that have been equipped with lidar sensors to gen-
erate dense, three-dimensional (3D) point clouds (Wallace et al., 
2012) or, more commonly, digital RGB or multispectral cameras 
(Araus and Kefauver, 2018; Hunt and Daughtry, 2017; Sankaran 
et al., 2015) to collect high-resolution images and 3D point clouds 
through post-processing of image sets. Specifically, point clouds 
have been used to estimate aboveground heights of objects and 
vegetation. Aerial laser scanning technology (i.e., lidar) has been a 
major source of 3D data sets via manned aerial vehicles but is very 
expensive. New innovations including low-cost UAS (Reynolds et 
al., 2018; Sankaran et al., 2015; Shi et al., 2016), optimized image 
matching software, and graphical processing units have reduced 
the inefficiency of image-based photogrammetry methods (3D 
vision) that existed in previous decades (Baltsavias, 1999). The 
cost and difficulty of lidar–UAS system integration (Wallace et 
al., 2012) has led to broad adoption of multispectral- and RGB-
UAS systems (3D vision UAS) to easily and rapidly produce 
temporal 3D datasets in agriculture using structure-from-motion 
(SfM) photogrammetry (Burkart et al., 2018; Holman et al., 2016; 
Malambo et al., 2018; Pugh et al., 2018; Xavier et al., 2017).

Ground Filtering and Separation Approaches
A critical step in estimating aboveground heights from UAS 

is the identification of ground points and accurate reconstruc-
tion of the digital terrain models (DTMs) to produce digital 
surface models (DSMs) from the digital elevation model. Ground 
filtering algorithms have been developed to delineate between 
points belonging to ground and non-ground classes and have 
been extensively reviewed, but the field has been dominated by 
lidar efforts in regard to urban and forested terrains (Chen et al., 
2017; Korzeniowska et al., 2014; Meng et al., 2010; Pfeifer and 
Mandlburger, 2009; Polat and Uysal, 2015; Serifoglu Yilmaz and 
Gungor, 2016; Sithole and Vosselman, 2004; Weed et al., 2002) 
with little focus on agricultural cropland. Among comparative 
ground filter studies, Montealegre et al. (2015) specifically dis-
cussed areas covered with cereal crops, concluding that an adaptive 
triangulated irregular network (ATIN) (Axelsson, 2000) resulted 
in the most accurate modeling of the terrain within crop- and 
grassland-dominated study areas. Crop heights are commonly esti-
mated using the difference-based method (DBM) in which DTMs 
are modeled by pre- or post-season bare earth images (Bareth et 
al., 2016; Bendig et al., 2013; Chu et al., 2018; Watanabe et al., 
2017). Alternatively, the point cloud method identifies ground 
points within each DSM and creates an independent DTM for 
each dataset (Malambo et al., 2018; Pugh et al., 2018). Holman 

et al. (2016) demonstrated that the point cloud method produces 
reduced root mean square error (RMSE) compared with the DBM 
due to biased ground representation of the pre- or post-f light 
ground model. Correct ground modeling is essential to improving 
estimation accuracy, so further studies are necessary to evaluate the 
most effective technique to model the terrain specific to using SfM 
photogrammetry from high-resolution UAS images of a breeding 
or genetic field trial.

Estimating Maize Height via UAS
Common trends have been demonstrated in past UAS field 

studies using 3D vision SfM height. Statistical metrics of UAS 
point clouds have been shown to be significantly correlated to 
manual phenotyping and lidar datasets in maize (Chu et al., 2018; 
Hu et al., 2018; Li et al., 2016a; Malambo et al., 2018; Niu et al., 
2018; Pugh et al., 2018; Shi et al., 2016; Varela et al., 2017). In 
many of these studies, plot-level point clouds were divided into 
quartiles, with the 99th (P99) percentile including the top of the 
plant and the bottom 1% (P01) representing the soil and above-
ground roots. Niu et al. (2018) demonstrated that the use of a 
higher quantile percentage reduced bias and RMSE in reference to 
lidar data. Similarly, UAS-derived heights at the higher percentiles 
commonly found at P95 and P99 in maize, but excluding the P100 
and maximum, have shown the greatest correlation to manual 
plant height measurements and least RMSE (Chu et al., 2018; 
Malambo et al., 2018; Pugh et al., 2018; van der Voort, 2016). The 
UAS-derived height estimates are highly repeatable (R = 0.91–0.99 
for P95) and capable of capturing genotypic variation equivalent to 
manual height measurements, especially at later dates (>50 d after 
sowing [DAS]) in the growing season when greater variability is 
expressed across genotypes (Pugh et al., 2018).

Using high-throughput technologies such as UAS and 
ground vehicles is rapidly becoming commonplace in agriculture 
and breeding programs. The majority of the published research 
has been focused on validation of UAS measurements to manual 
phenotyping, and it is evident in the literature that UAS-derived 
phenotypes provide highly accurate measurements, highly corre-
lated to manual phenotyping data. The focus of this study was to 
expand beyond validation of UAS-estimated heights toward using 
the data as it is presented (i.e., without validation). The objectives 
of this study were to: (i) compare multiple methods of ground 
point filtering for DSM accuracy, (ii) identify sources of variation 
across UAS platforms and environmental treatments throughout 
the growing season, (iii) apply nonlinear modeling approaches to 
identify critical flight dates and capture new growth parameters, 
and (iv) evaluate UAS height estimates and nonlinear modeling 
parameters for their ability predict grain yield in maize. To conduct 
this work efficiently, an improved method was needed to increase 
the speed of extracting plot information of large studies in the 
UAS-to-knowledge pipeline; a novel plot boundary delineation 
function to generate plot boundary ESRI shapefiles automatically 
given two boundary coordinates, the experimental design, and plot 
dimensions of the breeding field are also described here.
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�Materials and Methods
Germplasm Material and Experimental Design

The Genomes to Fields (G2F) initiative (https://www.
genomes2fields.org/) is a multidisciplinary umbrella initiative 
aimed at understanding the genotype ´ environment interaction 
of the maize genome (AlKhalifah et al., 2018; Gage et al., 2017). 
As of 2018 and beginning in 2014, the G2F collaborators have 
evaluated more than 94,000 field plots involving more than 1700 
hybrids across 77 unique environments in 23 states and provinces 
in the United States and Canada. For this study, the 2017 G2F 
trials were evaluated and imaged via UAS in College Station, TX. 
This trial was comprised of 280 unique hybrids, with 230 common 
hybrids across three different management environments: irri-
gated, optimal planting (G2FE); unirrigated, optimal planting 
(DG2F); and irrigated, delayed (?30 d) planting (G2LA). Each 
trial was arranged in a randomized complete block design (two 
replicates per trial) with two-row plots, 0.76-m row spacing, and 
7.62-m plot lengths. The three trials were planted adjacent to each 
other in a single field of approximately ?1.4 ha.

Ground Truth Measurements
Manual height measurements were collected on several dates 

(Supplemental Table S1) throughout the growing season to assess 
the accuracy of the UAS height estimates. Two heights were taken 
during manual phenotyping: (i) the apex height, which was either 
the erect emerging leaf (pre-flowering) or the tip of the tassel, and 
(ii) the flat plane of the plot during vegetative growth or the flag 
leaf height during reproductive stages (Supplemental Fig. S1A). 
Furthermore, manual terminal height measurements were taken 
on all plots at the tip of tassel height (PHTTRML) after flowering 
was completed. Manual measurements were collected as a visual 
plot average by measuring a single representative plant.

UAS Image Collection
Two platforms were used, a rotary-wing and a fixed-wing 

UAV. The rotary-wing model, a DJI Phantom 3 Professional with 
a 12 megapixel DJI FC300X camera, was flown at an altitude of 25 
m above the ground surface with an 80% forward and side image 
overlap. Fixed-wing images were collected with a Tuffwing UAV 
Mapper (http://www.tuffwing.com) equipped with a 24 megapixel 
Sony a6000 RGB camera. Fixed-wing surveys were conducted at 
a 120-m altitude with 80% image overlap. The goal was to collect 
weekly UAS imagery throughout the early growing season and 
transition to biweekly f lights at a 3- to 4-d interval during the 
exponential growth phase based on observations from earlier stud-
ies (Malambo et al., 2018; Pugh et al., 2018). Twenty-two and 19 
flights were completed throughout the 2017 growing season by the 
rotary-wing and fixed-wing platforms, respectively (Supplemental 
Table S1).

Image Processing
All UAS images were processed using SfM photogrammetry 

algorithms in either the Pix4Dmapper (https://www.pix4d.com) or 

Agisoft PhotoScan Professional (AgiSoft, 2016) software. In gen-
eral, these software packages are equivalent and used to identify 
common features (tie points) across images followed by triangula-
tion and distortion adjustment optimization to generate densified 
3D point clouds, DSM, and orthomosaic images. Due to the large 
collaborative effort of this project, the preference of the software 
was based on each group’s (fixed wing or rotary wing) capability 
and familiarity. Ground control points were placed throughout 
the study sites to ensure correct scale, orientation, and geographic 
location of generated outputs. All of the fixed-wing flights were pro-
cessed in Agisoft PhotoScan, while the majority of the rotary-wing 
flights were processed in Pix4Dmapper (excluding flights on 14 and 
27 July 2017). Issues with image matching and tie point identifica-
tion during stages of canopy closure resulted in large “black holes” 
within the center of some rotary-wing flight image mosaics. In an 
attempt to resolve the holes of missing data, Agisoft Photoscan was 
used in those mosaics with holes and resulted in improved data for 
some dates (14 and 27 July 2017). Where Agisoft Photoscan did 
not improve the data quality, manual tie point assignment was per-
formed. All raw and processed image output files from this study 
are publicly available at Cyverse (Murray et al., 2019).

Data Extraction Pipeline
Following the initial processing of raw images into point 

clouds, a novel processing pipeline was developed to acquire 
plot-based height estimates from the point clouds (Fig. 1a). 
R/UAStools::plotshpcreate (https://github.com/andersst91/
UAStools) was developed to construct ESRI shapefiles (.shp) of 
individual research plots for subsequent plot extraction (Fig. 1b). 
The initial assignment of these plots is based on the GPS coordi-
nates of an AB line representing the bottom left corner of the first 
plot (A) and the top left corner of the trial within the same row 
as the A point (B). Using a data frame containing the experimen-
tal design, plot dimensions, and unique plot IDs (i.e., a research 
“field book”), the script produces an ESRI shapefile that contains 
all of the plot boundaries necessary to extract plot-level measure-
ments. However, we have found that some manual adjustment is 
needed when the shapefile is visually overlaid on the mosaics due 
to subtle variances in tractor rows (even when GPS guided) and in 
the orthomosaics that are exaggerated when overlaying a precise 
rectangular grid.

The point clouds were first clipped to the trial level, and 
large blunders (i.e., serendipitous point anomalies above or 
below the point cloud) were manually removed using the seg-
ment tool in CloudCompare v2.10 (Girardeau-Montaut, 2016). 
Following manual blunder removal, a custom batch script was run 
including executable functions from LAStools (Isenburg, 2015; 
rapidlasso, 2017) and FUSION/LDV (McGaughey, 2016) soft-
ware (https://github.com/andersst91/UAS_Height_Pipeline). In 
brief, the pipeline (i) sorted data points (LAStools\lasssort.exe) to 
improve processing efficiency, (ii) removed additional blunders 
(LAStools\lasnoise.exe) closer to the canopy structure, (iii) exe-
cuted a ground filtering algorithm (FUSION\GroundFilter.exe) 

https://www.genomes2fields.org
https://www.genomes2fields.org
http://www.tuffwing.com
https://www.pix4d.com
https://github.com/andersst91/UAStools
https://github.com/andersst91/UAStools
https://github.com/andersst91/UAS_Height_Pipeline
lasssort.exe
lasnoise.exe
GroundFilter.exe
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to identify ground points, (iv) identified key points 
(LAStools\lasthin.exe) on the vertex of the hills 
from the ground filter for DTM modeling, and 
(v) interpolated or constructed the DTM from 
the key points (FUSION\GridSurfaceCreate.exe). 
Following the DTM construction, the noise-filtered 
point cloud (step ii output) was adjusted to aboveg-
round height using the DTM (LAStools\lasheight.
exe), and points below the digital elevation model 
(i.e., the ground) were removed in order to not bias 
the height estimates with negative values (Fig. 1c). 
Using the adjusted “Z” point cloud, the plot-level 
ESRI shapefile was used to clip individual plot 
point clouds (FUSION/PolyClipData.exe) and 
calculate statistical metrics within each of the plots 
(FUSION/CloudMetrics.exe), including estimating 
height from the point clouds. Further data compil-
ing and processing was conducted in R version 3.3.1 
(R Core Team, 2016). All manually collected and 
extracted phenotypes from this study are publicly 
available (Anderson et al., 2019).

Comparison of Terrain Modeling Methods
Study Areas

Three flight dates were chosen for the purpose 
of comparing ground filtering algorithms based 
on available manual height measurements and the 
collection of images from both UAS platforms 
(Supplemental Fig. S2). The first site (G2LA 9 
May 2017) was characterized with low canopy den-
sity, high ground point representation, and young 
(33 DAS) hybrid maize plants: the low canopy den-
sity hybrid (LCDH) site. The second site (G2LA 2 
June 2017) was characterized by full canopy closure, 
minimal ground point representation, and mature 
(57 DAS) hybrid maize plants: the high canopy den-
sity hybrid (HCDH) site. The third site (YYCP 24 
May 2017) was characterized by medium canopy 
density, medium ground point representation, and 
young vegetative (61 DAS) inbred maize plants: the 
medium canopy density inbred (MCDI) site. The 
MCDI study site was separate from G2F, consist-
ing of 533 plots from three biparental recombinant 
inbred line mapping populations; these plots pro-
vide a useful contrast to address other common 
research needs (e.g., new line development, quanti-
tative trait loci mapping, and trait discovery).

Terrain Modeling Methods
The DBM of terrain modeling was compared 

with more advanced point cloud methods com-
monly used with lidar data. The DBM relies on a 
preseason (i.e., pre-plant) or postseason flight of the 

Fig. 1. (a) Flow chart depicting unmanned aerial system (UAS) data curation pipeline 
from image acquisition to statistical analysis of phenotype estimates; (b) graphi-
cal representation of the R/UAStools::plotshpcreate inputs and plot-level polygon 
ESRI shapefile output; and (c) visual conversion of a digital surface model (DSM) to 
aboveground canopy surface models (CSM) using digital terrain modeling (DTM) via 
hierarchical robust interpolation (HRI).

lasthin.exe
GridSurfaceCreate.exe
lasheight.exe
lasheight.exe
PolyClipData.exe
CloudMetrics.exe
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bare ground to model the terrain. This terrain model is then sub-
tracted from the DSMs in season to obtain a crop surface model 
(Supplemental Fig. S1B). The point cloud based methods are algo-
rithms that work iteratively through point clouds of each flight and 
identify ground points based on classification tuning parameters 
that are set by the user. Three point cloud methods were selected 
for evaluation including hierarchical robust interpolation (HRI) 
(Kraus and Pfeifer, 1998), cloth simulation filter (CSF) (Zhang et 
al., 2016), and ATIN (Axelsson, 2000) based on (i) open access 
software, (ii) computational efficiency, and (iii) accuracy perfor-
mance as indicated in the literature. Optimized filter parameters 
were identified through minimization of the RMSE and mean 
absolute error (MAE) between UAS height estimates and manual 
ground truth measurements taken the same day as the UAS sur-
veys. Optimized algorithm parameters were then used to compare 
ground filtering methods across UAS platforms and study sites. 
Details on the point cloud based methodology and optimized fil-
tering parameters can be found in Supplement 3.

Statistical Inference
Variance Component Estimates

From the extracted point cloud derived canopy height metrics 
(P90, P95, P99, and Max), we fit mixed linear models using restricted 
maximum likelihood in JMP version 14.0.0 (SAS Institute, 2018) 
to define the best linear unbiased predictors (BLUPs) of the hybrids 
by their pedigree. Models were fit on a per flight date basis by UAS 
platform. The individual G2F trials were evaluated as a randomized 
complete block design including spatial regression (range and row 
[what furrow irrigation runs down], also called row and column, 
respectively, where furrow irrigation is not used):

2 2 2 2 2
G r i jY e=m+s +s +s +s +s  	 [1]

with terms genotype (sG
2), replicate (sr

2), range (si
2), row (sj

2), 
and residual error (s e

2). By flying all three trials within the same 
flight dates, we were able to evaluate the variance components of 
UAS plant height as a multi-environment randomized complete 
block design:

2 2 2 2 2 2 2
G E G E E(r) E( ))E(i jY ´ e=m+s +s +s +s +s +s +s  	 [2]

with terms genotype (sG
2), environment (sE

2), genotype ´ envi-
ronment interaction (sG×E

2), replicate nested within environment 
(sE(r)

2), range nested within environment (sE(i)
2), and row nested 

within environment (sE( j)
2).

Repeatability
Repeatability (R) estimates represent the percentage of genetic 

variation explained by the data compared with the experimental 
variation explained excluding identifiable environmental effects. 
Repeatability was calculated on an entry means basis similar 
to broad-sense heritability (H2) with the key differentiation 
of presence (H2) or absence (R) of familial structure. Within-
environment repeatability estimates were calculated on single 
environments with the number of replicates (r):
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Multi-environment repeatability was calculated by expanding 
Eq. [3] to include the entry ´ environment interaction variation 
component (and the number of environments, E):
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Nonlinear Logistic Function
Implementation of nonlinear modeling was assessed to fur-

ther reduce the dimensionality of the dataset of multiple flights 
throughout the growing season. Maize being an annual crop, we 
assumed that plant height should follow an asymptotic model that 
begins with zero at planting and concludes its lifespan with a ter-
minal growth parameter (Archontoulis and Miguez, 2015). The 
three-parameter logistic model best followed these assumptions:

( )
( )01 exp

Lf x
k x x

=
é ù+ - -ë û

 	 [5]

where modeling height is a function of DAS (x) with the asymp-
tote (L, m), inflection point (x0, DAS), and the growth rate (k, 
DAS−1) of the fitted curve (Verhulst, 1838). The asymptote is the 
maximum value of the curve, which represents terminal PHT. 
The inflection point indicates the DAS when the rate of growth 
is maximized. The growth rate parameter defines the steepness 
of the logistic curve. Logistic curves were fit using the Fit Curve 
tool in JMP 14 (Analyze ® Specialized Modeling ® Fit Curve) 
and parameters were estimated on UAS height estimates on a plot 
basis as well as on a pedigree basis using the BLUPs of the indi-
vidual environment restricted maximum likelihood models (Eq. 
[1]). Significance of the logistic parameters was evaluated using 
the chi squared (c2) test (a = 0.05, df = 1) to identify logistical 
curves with poor fits to UAS height estimates. Plots with nonsig-
nificant parameter fits were excluded in further analysis because 
the logistical function would not accurately represent that plot’s 
or pedigree’s growth model.

Stepwise Regression of Predictive Models
Forward and reverse stepwise regression were performed in 

JMP 14 using the Fit Model function to identify the most predic-
tive UAS height parameters with respect to grain yield (t ha−1). 
Parameters identified by the stepwise regression procedure were 
then fit as continuous effects in a linear model to assess their abil-
ity to predict yield based on their coefficient of determination 
(R2) and RMSE. The parameters tested for each UAS platform 
included three sets of predictors: (i) the logistic parameters, (ii) 
pedigree BLUPs by flight date, and (iii) the combination of logis-
tic parameter and pedigree BLUPs by flight date. Predictors were 
removed if they were not significant in the fit model. Due to the 
time series nature of our dataset, collinearity between the predictor 
variables was evaluated using the variance inflation factor (VIF). 
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The VIF [1/(1 − R2)] cutoff was set to VIF £ 4.0, and the variable 
that caused the least reduction in R2 of the model was removed.

�Results and Discussion
Extraction of informative UAS height data from SfM pho-

togrammetry point clouds required the optimization of terrain 
modeling and selection of the optimal point cloud metric to be 
implemented within the data extraction pipeline. We first opti-
mized the terrain modeling procedure through the comparison of 
four ground modeling methods (HRI, ATIN, CSF, and DBM) 
across three survey sites varying in canopy structure (LCDH, 
MCDH, and HCDH) and two UAV platforms (rotary wing 
and fixed wing). Based on these results, comparison across UAS 
platforms at each flight date were made using HRI to identify 
sources of variation throughout the growing season. Following the 
comparison of UAS platforms by flight date, nonlinear logistic 
functions were fit to identify critical flight dates and capture new 
growth parameters. Finally, we evaluated UAS height estimates 
and nonlinear modeling parameters for their ability predict maize 
grain yield.

Optimizing Terrain Modeling and Point Cloud Metric
A subset of three flight dates (LCDH: G2LA 9 May 2017; 

HCDH: G2LA 2 June 2017; and MCDI: YYCP 24 May 2017) 
were chosen to evaluate terrain modeling methods and point cloud 
metric comparisons across different maize canopy structures to 
optimize the data extraction pipeline prior to processing the 
complete season datasets. Selection of the three flight dates was 
based on the availability of manual height measurements while 
maintaining high qualitative appearance (i.e., minimal noise) 
from both UAS platforms all on the same date (Pugh et al., 2018). 
Comparisons were made between the DBM and three point cloud 
methods (HRI, ATIN, and CSF) to identify the optimal terrain 
modeling method to be implemented within the data extraction 
pipeline. Further comparisons were made between four point cloud 
metrics (P90, P95, P99, and Max) to identify the most informa-
tive metric based on RMSE, MAE, percentage of genetic variance 
explained, and repeatability.

Accuracy of Ground Filtering Methods 
vs. Ground Truth Measurements

Across both UAS platforms and canopy structures, all of the 
algorithms performed similarly (Fig. 2a) when their parameters 
were optimized (Sithole and Vosselman, 2004), probably due to 
the relatively flat plane of the study sight (irrigation furrows not-
withstanding) compared with the more varied natural terrain these 
algorithms were designed around. Across both UAS platforms, 
halving the resolution (fixed wing ?2 cm pixel−1; rotary wing 
?1 cm pixel−1; Supplemental Table S1) via fixed-wing flights had a 
noticeable impact on the MAE (FWP95 19–40 cm; RWP95 10–21 
cm) of the height estimates compared with ground truth (Fig. 2a). 
The fixed wing achieved its best MAE to ground truth across the 

canopy structures 16, 20, and 11 cm within LDCH-DBM-Max, 
MDCI-HRI-Max, and HCDH-HRI-Max, respectively. The 
rotary wing achieved its best MAE to ground truth across the 
canopy structures within 6, 8, and 10 cm for LDCH-CSF-P99, 
MDCI-DBM-Max, and HCDH-HRI-P95, respectively. Within 
the LCDH and MCDI sites, the MAE of the fixed wing ranged 
from ?18 to 45 cm, whereas the rotary wing ranged from ?8 to 
25 cm, depending on the filter method and metric.

These results demonstrated that sparse canopy structure (e.g., 
tassels, young plants) were better captured by the low-altitude 
rotary wing rather than the fixed wing. We hypothesize that the 
reduced resolution results in triangulating pixels (i.e., smoothing 
of the canopy structure) at lower elevations in the canopy as well as 
failure to capture less dense features at the canopy apex (e.g., tassel, 
erect leaf, flag leaf). In general, plant height was consistently under-
estimated by UAS estimates from the high-altitude fixed wing, 
and overall accuracy improved with increased crop maturity. In 
contrast, the low-altitude rotary wing transitioned from under-
estimated to overestimated heights as the metric percentile was 
increased, indicating increased error blunders above the canopy 
surface within the rotary-wing datasets (Supplemental Fig. S3).

Genetic Variation and Repeatability 
of Terrain Model Comparisons

Absolute accuracy relative to traditional manual measure-
ments as tested above is important to validate plant height 
estimates. However, plant breeders (focused on selecting the best 
cultivar) and geneticists (focused on distributions for mapping) can 
sufficiently use and are more interested in relative rankings, genetic 
variation captured, and repeatability across germplasm. Genetic 
variation (s2

G) explained and repeatability (R) are two metrics 
that have been used to compare the precision of different point 
cloud percentiles (Pugh et al., 2018) but can also be used to com-
pare the precision of different UAS platforms, different canopy 
structures, and different ground filtering algorithms. Overall, both 
genetic variation and repeatability showed similar results among 
each factor individually (UAS platforms, canopy densities, ground 
filtering algorithms, and point cloud percentiles) when looking at 
only a single factor (Fig. 2b); however, specific interactions of these 
factors are notable and can inform best practices.

The P90 and P95 metrics most consistently captured the 
greatest genetic variation across study sites and ground filtering 
methods (Fig. 2b), consistent with other findings using a different 
experiment (Pugh et al., 2018). The Pmax metric captured the least 
genetic variation and had increased noise in low-altitude flights 
despite showing the most consistency with the ground data (Fig. 
2b). The P90 and P95 metrics of the HRI and ATIN methods con-
sistently explained greater genetic variation and repeatability than 
the ground truth measurements (Fig. 2b; red bar) across all sites 
and platforms, with HRI tending to outperform ATIN. Although 
the DBM outperformed HRI in genetic variation and repeatability 
at some sites (FW-LDCH and RW-MDCI), the majority of situ-
ations resulted in lower genetic variation and repeatability (less 
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Fig. 2. (a) Violin plots comparing the distribution of absolute difference between unmanned aerial system (UAS) height metrics and ground 
truth measurements across UAS platforms (fixed wing and rotary wing) and study sites (LCDH, low canopy density hybrids; MCDI, medium 
canopy density inbred; HCDH, high canopy density hybrids) for each of the ground filtering methods (HRI, hierarchical robust interpolation; 
ATIN, adaptive triangulated irregular network; CSF, cloth simulation filter; DBM, difference based method); and (b) comparison of the percent-
age of genetic variation explained (left) and repeatability (right) across UAS platforms and study sites for each of the ground filtering methods.
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desirable) compared with the three point cloud based methods and 
lower variation than ground truth data (FW-LCDH, RW-MDCI, 
and FW-HDCH) (Fig. 2b).

Several important discoveries were made from this compara-
tive study for implementing UAS SfM height estimates. First, high 
accuracy compared with manual measurements did not result in 
genetic variation and repeatability being maximized (e.g., CSF 
and DBM approaches; Fig. 2; Supplemental Fig. S3) because the 
ground measurements themselves are probably f lawed (biased 
across data curators’ consistency and experience phenotyping a 
trait of interest). Second, although specific point cloud percentiles 
had greater accuracy, that did not always correlate to the highest 
repeatability or genetic variation (e.g., P99 vs. P95 and P90; Fig. 
2). Third, one of the greatest benefits of UAS height estimates 
was the ability to substantially improve repeatability over manual 
measurements. While genetic variation was improved somewhat 
across study sites and platforms, repeatability increased by reduc-
ing error and better partitioning spatial variance; for example, the 
HRI method across all canopy densities and UAS platforms (RP95: 
50–80%; sG

2: 20–50%; Fig. 2b) outperformed ground truth mea-
surements (R: 30–60%; sG

2: 18–40%; Fig. 2b) with more useful 
variance decomposition (Supplemental Fig. S4). Finally, if adequate 
ground representation is available throughout the study area (alleys 
between plots for example) in each flight, point cloud filtering 
(specifically HRI) methods are a more robust alternative to the 
difference-based method. The HRI method was easy to optimize, 
robust across study sites and UAS platforms, and improved repeat-
ability over manual measurements. Based on these results, digital 
terrains were modeled off ground points identifies with the HRI 
ground filtering method, and the P95 metric was used to estimate 
plant height from point clouds in our data extraction pipeline for 
the rest of the study.

Comparison of UAS Platforms across Flight Dates
Statistics of UAS Survey Flight Dates

Throughout the growing season, most UAS surveys had either 
no difference or 1 d difference between flight dates of the two UAS 
platforms (Supplemental Table S1). During the beginning of the 
growing season, minimal plant structure was captured by UAS imag-
ery due to a sparse canopy density and small physical size of the maize 
seedlings. Plant structure was not represented within the fixed-wing 
point clouds until 48 DAS for G2FE and DG2F and 35 DAS for 
G2LA (later plantings have faster germination and growth), while 
the rotary wing first detected plant structure at 27 DAS for G2FE 
and DG2F and at 21 DAS for G2LA (Fig. 3). The early plantings 
(G2FE and DG2F) demonstrate that higher flight altitudes require 
increased canopy structure before being represented in the SfM 
point clouds. This 48-d delay was probably due to a 13-d gap in 
fixed-wing flights during early growth stages (biweekly) in which the 
date when structure became capturable was missed. Understanding 
the date at which structure can be captured is important to reduce 
resources from UAS surveys of non-informative dates but is also 
critical for nonlinear modeling of growth.

The goal of increasing flights to twice weekly (every 3 to 4 d) 
rather than once a week was to capture the exponential growth 
period of maize, when a few days has been shown to make a large 
difference (Pugh et al., 2018). Unfortunately, the complete expo-
nential stage was missed for the fixed-wing f lights in the first 
plantings (G2FE and DG2E) due to limited knowledge of when 
this stage would begin. With the delayed planting of G2LA, sur-
veys were collected biweekly and the exponential growth stage was 
captured effectively by both fixed and rotary wings (Fig. 3). The 
fixed-wing surveys of G2LA captured the exponential growth stage 
beginning around 35 DAS. and P95 height effectively increased 
by ?42 cm wk−1 at a rate of ?6 cm d−1 (Supplemental Table S2; 
Fig. 3). Within the rotary-wing surveys, the exponential growth 
stage began around 35 DAS, and P95 height effectively increased 
by 37, 37, and 42 cm wk−1 at a rate of 5, 5, and 7 cm d−1 across 
the G2FE, DG2F, and G2LA trials, respectively (Supplemental 
Table S2; Fig. 3). The higher resolution of the rotary wing coupled 
with weekly flights rather than once every 2 wk resulted in better 
observations of the exponential growth phase via temporal flight 
dates in all trials.

Analysis of temporal P95 height data indicated that a combi-
nation of survey methods should be used to successfully capture the 
growth patterns of maize hybrids. We have identified that weekly 
or fortnightly UAS surveys should begin 3 wk after sowing and 
continue through the flowering stage to accurately model the expo-
nential growth stage and may require the combination of different 
f light altitudes based on the maturity of the trial. Early season 
flights should be flown at lower altitudes (£25 m) to increase the 
detection of sparse plant structure by SfM photogrammetry, while 
later season flights should be flown at higher altitudes (>25 m) to 
ensure image matching, tie point identification, and point cloud 
densification. The ability to capture early season plant structure 
is still limited and will require improved SfM functionality or 
methods that do not rely on SfM photogrammetry (e.g., lidar or 
stereo sensors).

Variance Components and Repeatability 
of UAS Flight Dates

As the crop grew, total variance throughout the growing 
season increased in a quadratic manner across both platforms 
and all trials, although the trend was less consistent for the low-
altitude rotary wing (black circles; Fig. 4). The repeatability 
estimates (white triangles; Fig. 4) were moderate (>60%) to very 
high (>90%), excluding uninformative image sets (e.g., flight dates 
with noticeably increased total variance like the rotary-wing flight 
on Day of the Year 128 of the optimal planted trials, the DSM of 
which was also visibly distorted). We determined that distorted 
flights were caused by a failure to identify key tie points in the 
mature canopies of the early plantings (DG2F and G2FE), leading 
to poor modeling of the canopy structure; this resulted in increased 
error variance, reduced consistency between replicates, and reduced 
genetic variance. Fixed-wing surveys captured ?10 to 40% greater 
genetic variation than PHTTRML (sG

2: ?30%). The rotary wing 
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itself did not improve the explanation of genetic variance within 
the early planted trials (Fig. 4) and increased genetic variance by 
?10% in the late planting (G2LA) compared with PHTTRML. 
Specifically, estimates from low-altitude images became inconsis-
tent during canopy closure accompanied by serendipitous spikes 
and dips in P95 height estimates and shrinkage of pedigree BLUP 
variance (e.g., rotary wing in Supplemental Fig. S5).

Variance component decomposition demonstrated that the 
majority of UAS surveys were informative. We recommend tem-
poral data collection, which allows identification of flights that 
deviate from a normal trend (e.g., spikes in total variance, reduced 
genetic variance, increased residual error). It would be difficult 
to identify if images collected from a single UAS survey should 
be used in downstream analysis without temporal comparison. 
Continued research is required to develop tools and methodolo-
gies for classifying an individual UAS flight as informative without 
a comparison group.

Nonlinear Logistic Growth Curves
These and previous UAS surveys of plant height cap-

tured appeared as a sigmoidal growth pattern (Fig. 3), which is 

commonly applied to plant growth (Archontoulis and Miguez, 
2015; Wardhani and Kusumastuti, 2013). While these data are 
highly informative, completing UAS surveys more than 20 times in 
a season is resource intensive and impractical, and the data can be 
redundant (assuming quality data are collected on every flight) for 
some dates. Furthermore, it is not possible to compare data across 
environments with different planting dates. A model that can both 
reduce the number of flights needed and predict the optimal flight 
dates after sowing would be valuable to maximize flight efficiency. 
Nonlinear models that capture the sigmoidal growth, specifically 
the logistical function (Eq. [5]), provide tools to model temporal 
crop growth and reduced dimensionality. Nonlinear models were 
fit on a plot-level basis, and BLUPs of the logistical parameters were 
extracted on a pedigree basis within each trial.

The fit of the logistic function had a RSME of 0.06 to 1.13 m 
across the trial environments, with the fixed wing (0.06–0.10 m) 
having a slightly better fit than the rotary wing (0.10–0.13 m). 
Similarly, the mean R2 across plots ranged from 0.98 to 0.99, 
demonstrating that the logistic function accurately explained the 
variation in P95 height, regardless of environmental conditions or 
UAS platform (Supplemental Table S3).

Fig. 3. Mean P95 height estimate (PHT) on a plot basis across the Genomes to Fields trials (DG2F, optimal planted, unirrigated trial; G2FE, 
optimal planted, irrigated trial; G2LA, delay planted, irrigated trial) and unmanned aerial system (UAS) platforms (fixed wing and rotary 
wing). Red error bars indicate the 95% confidence intervals scaled by one order of magnitude for visualization purposes. Numbers above 
the confidence intervals indicate days after sowing.
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Variance component and repeatability estimates demon-
strated that the three parameters of the plot-level logistic function 
captured equivalent or greater genetic variation then PHTTRML 
(sG

2 = ?30%, R = 60–67% within environments). The inflection 
point explained the greatest genetic variation in the early planted 
trials, ranging from 43 to 65% of the total variation, and met or 
exceeded the genetic variance captured by any single flight date 
or PHTTRML (Supplemental Fig. S6). High genetic variation of 
the inflection point demonstrated that there was wide genetic 
variability in PHT at mid-season growth (halfway between zero 
and asymptote). The inflection point is a novel predictive pheno-
type not captured by single height estimates alone. The variance 
explained by the asymptote exceeded the genetic variation of 
PHTTRML, excluding the G2FE and DG2F rotary wing, where 
tie point identification was poor. The asymptote, indicating ter-
minal growth of the logistic curve, should be equivalent to the 
PHTTRML measurement. Growth rate explained greater genetic 
variation than the asymptote in three data sets (fixed-wing DG2F, 
fixed-wing G2FE, and rotary-wing DG2F) and was never greater 
than the genetic variation explained by the inflection point. The 
fixed-wing comparisons demonstrated that variation in the growth 

rate is reduced if planting is delayed (G2LA trial vs. early planting). 
Reduced variation is explainable by increased growing degree days 
later in the season leading to more consistent, rapid growth across 
genetic backgrounds. The rotary wing effectively captured the 
genetic variation in the inflection point, which occurred during 
periods of lower canopy density when tie points could be better 
identified.

Although the repeatability of logistic parameters was reduced 
(did not exceed 60%; Supplemental Fig. S6) compared with the 
best individual flight date UAS P95 estimates, the logistic param-
eters provided an opportunity to use multi-environment UAS data 
sets in a combined analysis. Specifically, logistical parameters do 
not confine UAS surveys to similar DAS or calendar dates across 
environments or years (e.g., P95 at 60 DAS). Combined analysis 
of PHTTRML measurements (sG

2 = 48%, R = 70%, Table 1) was 
exceeded only by the fixed-wing P95 inflection point (sG

2 = 50%, 
R = 82%, Table 1). Although limited improvement was made in 
capturing greater genetic variation of the logistic parameter over 
PHTTRML, a noticeable reduction (23–77%) in the residual varia-
tion (excluding rotary-wing growth rate) was observed (Table 1). 
Specifically, variance was partitioned to a greater extent within 

Fig. 4. Stack bar graphs of the percentage of variation explain by the variables in Eq. [3] for individual unmanned aerial system (UAS) surveys 
of individual UAS platforms (fixed wing and rotary wing) and experimental trials (DG2F, optimal planted, unirrigated trial; G2FE, optimal 
planted, irrigated trial; G2LA, delay planted, irrigated trial). Days of the year of the UAS image collection are indicated on the x axis and days 
after sowing (DAS) are indicated by the numbering above the bars. Total variance captured (black circle) per image set, defined by the right y 
axis, puts repeatability and genetic variance explained into perspective of other flight dates. Repeatability is indicated by the white triangles.
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environment, genotype ´ environment interaction, and spatial 
variables, resulting in a 3 to 15% increase in repeatability estimates 
over PHTTRML (excluding growth rate). The results demonstrated 
that nonlinear logistic modeling could provide highly repeatable, 
genetically informative phenotypes, which would alleviate the need 
for capturing of UAS surveys at equivalent DAS across trials, years, 
or locations, allowing more efficient targeting of flight dates, as 
well as providing novel phenotypes beyond simple height measure-
ments. Incorporation of growing degree days, weather patterns, or 
other time-dependent parameters as the dependent factor (x) of the 
growth curve could improve comparisons of growth curves across 
sites and warrants further investigation.

Correlation to Grain Yield
While the plant height trait is of interest in and of itself, it 

is of greater interest as a phenotype correlated with and an aid in 
predicting the highest yielding genotypes. Pearson’s correlations 
between PHTTRML and grain yield demonstrated 0.28, 0.25, 
and 0.23 for DG2F (Fig. 5), G2FE, and G2LA trials, respectively 
(Table 2; Supplemental Fig. S7, S8, and S9). These correlations 
are slightly lower than generally seen in the Texas A&M breed-
ing program and substantially lower than that found by Barrero 
Farfan et al. (2013), probably due to the G2F experiment including 
hybrids of diverse origins that contained a variety of unadapted 

factors that affect the yield and plant height relationship in differ-
ent ways (e.g., photoperiod sensitivity, temperature stress, drought 
stress, etc.). The UAS P95 height estimates showed higher cor-
relations to grain yield than PHTTRML beginning ?70 DAS for 
DG2F and G2FE, while flights after ?50 DAS showed higher 
correlations to yield in the G2LA trial. Furthermore, fixed-wing 
UAS P95 heights had maximum yield correlations of 45, 42, and 
42%, while the rotary wing reached 41, 36, and 46% correlation 
to yield for DG2F, G2FE, and G2LA, respectively (Table 2). The 
?20% increase in correlation to yield from UAS P95 estimates 
over PHTTRML measurements demonstrate that UAS P95 height 
estimates can serve as an improved method for collecting pheno-
types to improve genetic gain.

Correlation between temporal measures of UAS P95 height 
and yield increased with time and were least informative for 
grain yield prior to the reproductive growth and grain fill stages. 
If using only plant height to predict yield, late season flights are 
more informative than flights prior to the vegetative-to-growth 
transition. However, both plant height and grain yield are sculpted 
by daily interactions between the genetics of the plants and the 
environment up to that point. This lack of correlation between 
early season UAS P95 height and yield suggests that the genetic 
variation in early season height is under independent genetic 
control. We hypothesize that vigorous early season growth could 

Table 1. Combined analysis (Eq. [2]) across Genomes to Fields trials for manual terminal height logistic curve parameters for each unmanned 
aerial system (UAS) platform. The UAS estimates used hierarchical robust interpolation ground modeling and P95 height estimates.

Component PHTTRML†

Fixed wing Rotary wing

Asymptote Growth rate Inflection point Asymptote Growth rate Inflection point

Genotype (G) 9.9 ´ 10−3 (48)‡ 1.3 ´ 10−2 (29) 1.3 ´ 10−4 (23) 1.7 (50) 7.9 ´ 10−3 (37) 4.1 ´ 10−5 (16) 1.3 (16)

Environment (E) 2.1 ´ 10−3 (10) 2.5 ´ 10−2 (55) 1.8 ´ 10−4 (33) 0.5 (16) 3.4 ´ 10−3 (16) 5.4 ´ 10−5 (21) 5.5 (70)

G ´ E 0 (0) 8.0 ´ 10−4 (2) 5.4 ´ 10−5 (10) 0.1 (4) 1.8 ´ 10−4 (1) 1.9 ´ 10−6 (1) 5.4 ´ 10−2 (1)

E(replicate) 0 (0) 1.5 ´ 10−3 (3) 4.5 ´ 10−5 (8) 5.9 ´ 10−2 (2) 4.3 ´ 10−5 (0) 3.2 ´ 10−5 (12) 0.2 (2)

E(range) 2.1 ´ 10−3 (10) 1.1 ´ 10−3 (2) 4.7 ´ 10−5 (8) 0.2 (7) 3.2 ´ 10−3 (15) 2.4 ´ 10−5 (9) 0.1 (1)

E(row) 3.2 ´ 10−3 (2) 7.9 ´ 10−4 (2) 1.7 ´ 10−5 (3) 0.3 (7) 2.1 ´ 10−3 (10) 2.2 ´ 10−5 (8) 0.2 (2)

Residual 6.1 ´ 10−3 (30) 3.2 ´ 10−3 (7) 8.9 ´ 10−5 (16) 0.5 (14) 4.4 ´ 10−3 (21) 8.3 ´ 10−5 (32) 0.6 (7)

Repeatability 0.70 0.85 0.62 0.82 0.73 0.42 0.77
† Manually measured terminal plant height.
‡ Values are raw variance component estimates, with percentage of genetic variation explained by each model variable and entry means in parentheses.

Table 2. Pedigree best linear unbiased predictor (BLUP) correlation between grain yield and manual terminal plant height (PHTTRML), the 
flight date with the highest correlation, and the logistic parameters across trials (DG2F, optimal planted, unirrigated trial; G2FE, optimal 
planted, irrigated trial; G2LA, delay planted, irrigated trial). Combined columns indicated correlations based on the pedigree BLUPs of a 
combined trial analysis.

Parameter

Fixed wing Rotary wing

DG2F G2FE G2LA Combined DG2F G2FE G2LA Combined

PHTTRML 0.28** 0.25*** 0.23*** 0.27*** 0.28** 0.25*** 0.23*** 0.27***
Best flight date 0.45*** 0.42*** 0.43*** – 0.41*** 0.36*** 0.47*** –
Asymptote 0.44*** 0.42*** 0.42*** 0.39*** 0.44*** 0.38*** 0.45*** 0.41***
Growth rate −0.46*** −0.42*** −0.34*** −0.42*** −0.30*** −0.13*** −0.13** −0.29***
Inflection point 0.46*** 0.42*** 0.18 0.36*** 0.42*** 0.36*** 0.15* 0.36***

* Significant at a < 0.05.
** Significant at a < 0.01.
*** Significant at a < 0.001.
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be pyramided into the terminally taller, higher yielding 
plants to develop cultivars improved across all growth 
stages; UAS P95 height estimates would be critical for 
practically testing this hypothesis.

While individual flight dates were highly correlated 
to grain yield, the correlation of the logistic parameters 
to grain yield equaled the highest correlated single flight 
date P95 height measurement. The asymptote parameter 
was 38 to 45% correlated to grain yield across trials and 
platforms (Table 2). The asymptote parameter describes 
the maximum plant height of the logistic curve and was 
69 to 76% correlated to PHTTRML (Fig. 5; Supplemental 
Fig. S7, S8, and S9). The inflection point was also 36 to 
46% correlated to grain yield in DG2F and G2FE, while 
becoming less informative (15–18%) in the later G2LA 
trial (Table 2). We speculate that the high correlation 
of inflection point and asymptote to grain yield may be 
equivalent to the previously reported predictive power 
of V6 and V10/12 height to grain yield (Machado et al., 
2002; Yin et al., 2011), although a leaf counting study 
would be necessary to validate this hypothesis. Growth 
rate depicted a negative trend to grain yield while showing 
a significant reduction in correlation from fixed wing (−30 
to −46%) to rotary wing (−13 to −30%). The negative cor-
relations between growth rate and both grain yield and 
plant height relates to the negative correlation between 
flowering time (37–73%) and growth rate (Supplemental 
Fig. S7, S8, and S9). Early maturity results in less vegeta-
tive growth and shorter plants. In addition, early hybrids 
are more likely to originate from the far northern United 
States and may be maladapted to Texas conditions.

Predicting Grain Yield from UAS Height 
Phenotypes

While simple correlations provided relationships 
between grain yield and a single P95 estimate or logistic 
parameter, it is possible that multiple height factors could 
be combined to make more robust predictions of yield. 
Forward and reverse stepwise regression was performed 
to identify the most predictive UAS height parameters 
for grain yield (t ha−1); the best of these were then fit as 
continuous effects in a linear model. Models were devel-
oped for each UAS platform separately, with three sets of 
possible predictors: (i) the logistic parameters, (ii) pedigree 
P95 height BLUPs by flight date, and (iii) the combina-
tion of logistic parameters and pedigree P95 height BLUPs 
by flight date.

Initially, PHTTRML was used as the predictor of 
grain yield, which resulted in R2 values of 0.08, 0.06, and 
0.07 with RMSE values of 1.02, 1.05, and 0.68 t ha−1 for 
DG2F, G2FE, and G2LA, respectively, and R2 = 0.16, 
RMSE = 0.50 t ha−1 from a combined trial analysis. 
Excluding logistic parameters, the fixed-wing f lights 
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identified the two flight dates most informative in yield predic-
tion at ?40 to 50 DAS and ?110 to 120 DAS, significantly 
increasing R2 (0.28–0.38) and reducing RMSE by ?0.06 t ha−1 
(Table 3; Supplemental Table S4). Similar R2 and RSME values 
were obtained with rotary-wing flights with the addition of a third 
predictor around 70 DAS. Using only the logistic parameters, the 
predictive power was slightly reduced (fixed-wing R2: 0.26–0.34; 
rotary-wing R2: 0.25–0.33) compared with the best sets of individ-
ual flight dates (Table 3) but were significantly improved compared 
with PHTTRML. Combining individual flight data and logistic 
parameters showed no improvement in predictive power and was 
inconsistent in the inclusion of only f light dates or a combina-
tion of flight dates and logistic parameters in the selected models 
(Supplemental Table S4). The individual flight dates identified 
through stepwise regression co-localize with the inflection point 
period (40–53 DAS) and terminal plant height (i.e., asymptote), 
which indicates why the logistic parameter model achieved equiva-
lent predictive power to the specific flight date model.

The comparison of relative rankings of hybrids from the 
models using logistic parameters vs. PHTTRML measurements 
demonstrated improved selection accuracy of UAS-derived logis-
tic curves over PHTTRML measurements (Supplemental Table 
S5). Prediction of grain yield using logistic parameters improved 
ranking error by 7 to 10 ranks over PHTTRML prediction (MAE 
= 59–78 ranks; Supplemental Table S5). Although improvement 
in relative ranking is ideal, plant breeders generally select a subset 
(e.g., the top 10% yielding hybrids) of their evaluated material to 
advance in evaluation trials. The UAS logistic-based prediction 
improved the selection accuracy of the top 10% yielding hybrids 
by ?50 to 150% over PHTTRML predictions (21%), and the 
combined analysis demonstrated 7 and 12% increases in selec-
tion accuracy for the fixed wing and rotary wing, respectively 
(Supplemental Table S5).

For a plant breeding program, selecting material to advance 
by UAS a month or more before maturity can speed the breed-
ing cycle, substantially decrease the cost and time compared with 
combine harvesting, and allow more environments to be screened. 
However, we acknowledge that the prediction of grain yield solely 
on height measurements is not an acceptable model of yield pre-
diction in these trials; nevertheless, significant improvements in 

predictive power were obtained by using UAS technologies tempo-
rally. Additional UAS-estimated phenotypes (vegetation indices, 
canopy cover, plant population, etc.) need to be developed and 
included with height for better predictions of yield if plant breed-
ers will ever be able to select based on remote sensing data.

For fundamental research into plant physiology, genetics, and 
development, these UAS findings open up interesting avenues to 
identify differences in growth trajectories, impractical to measure pre-
viously. Most importantly, such studies can be conducted on mature 
plants, nondestructively, in a field setting, which is important if discov-
eries are ever to be used in practical crop or agronomic improvement.

�Conclusion
This study is one of the first applications of UAS phenotyp-

ing of agricultural research at a representative scale (>1500 plots) 
of a breeding or agricultural research program. The comparisons 
of different UAS platforms and flight altitudes have provided addi-
tional insights toward reliable application of UAS imagery within an 
agricultural field trial setting, specifically within crops with dense 
canopy structure yet sparse apex canopy features (e.g., tassels). To our 
knowledge, this is one of the first empirical studies to move beyond 
UAS phenotype validation toward phenotypic predictive modeling 
across a large set of plant material (280 hybrids), while validating a 
previous finding (Pugh et al., 2018) in a different germplasm pool 
and environment. Four of the most important findings were: (i) the 
dense canopy structure at later growth stages of maize restricts execu-
tion of SfM photogrammetry, returning inconsistent data quality, 
specifically at low flight altitudes; (ii) increased genetic variation 
(10–40%) was captured by UAS P95 compared with conventional 
manual terminal plant height measurements, accompanied with 
reduced residual error, resulting in increased measurement repeat-
ability; (iii) logistic functions accurately model UAS maize height 
estimates, which can be used in place of independent flight dates 
to develop robust prediction models and allow execution of com-
bined environment analysis with relative ease; and (iv) predictive 
modeling of grain yield via UAS height estimates or logistic function 
parameters demonstrated substantial improvements in the propor-
tion of grain yield variation explained and overall selection accuracy 
compared with traditional PHTTRML in model selection accuracy.

Table 3. Coefficient of determination (R2) for the best prediction models of yield defined by stepwise regression (Supplemental Table S4) 
by unmanned aerial system (UAS) platform (fixed wing and rotary wing) and Genomes to Fields trial (DG2F, optimal planted, unirrigated 
trial; G2FE, optimal planted, irrigated trial; G2LA, delay planted, irrigated trial).  Combined columns indicated the combined trial analysis.

Grain yield predictor†

Fixed wing Rotary wing

DG2F G2FE G2LA Combined DG2F G2FE G2LA Combined

Logistic parameters 0.34 (0.92)‡ 0.26 (0.95) 0.27 (0.62) 0.32 (0.49) 0.33 (0.94) 0.32 (0.99) 0.25 (0.62) 0.32 (0.49)
Flight dates 0.38 (0.92) 0.35 (0.97) 0.28 (0.60) NA§ 0.39 (0.90) 0.33 (0.99) 0.26 (0.61) NA
Logistic parameters  

and flight dates
0.37 (0.92) 0.35 (0.97) 0.28 (0.60) NA 0.38 (0.92) 0.33 (0.98) 0.26 (0.61) NA

† �Logistic parameters, prediction model defined using logistic parameters in the stepwise regression; flight dates, prediction model defined using UAS estimates by 
flight date in the stepwise regression; logistic parameters and flight dates, prediction model defined using logistic parameters and UAS estimates by flight date in the 
stepwise regression.

‡ Values in parentheses are the root mean squared errors of grain yield (t ha−1).
§ NA, the same flight date was at different growth stages for early and late (G2LA) plantings, so they could not be combined.
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Supplemental Material
Supplement 1 contains supplemental tables.

Supplement 2 contains supplemental figures.

Supplement 3 contains a discussion of point-cloud-based ground filtering 
algorithms.
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