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Abstract 
Field-based forest inventory plots are fundamental for many forest studies. These on-the-ground measurements of small samples of forested 
areas provide foresters with key information such as the size, abundance, health, and value of their forests. Recently, forest inventory plots have 
begun to be used as ground validation for tree features automatically extracted from remotely sensed data sets. Additionally, machine learning 
methods for feature extraction rely heavily on large quantities of training data and require these field forest inventory measurement datasets 
for algorithm training. Undermining the usefulness of forest inventory plot data as validation or training data is the positional uncertainty of plot 
location measurements. Because global navigation satellite systems (GNSS) cannot reliably measure plot center coordinates under thick tree 
canopy, plot center coordinates usually contain multiple meters of horizontal error. We present a method for reliably measuring plot center coor-
dinates in which plot centers are individually marked with low-cost targets, allowing plot centers to be manually measured from orthoimagery 
captured during the leaf-off season. Our plot center measurements are shown to have less than 10 cm of horizontal error, an improvement of 
an order of magnitude over traditional GNSS methods.

Study Implications:  Recently, as unoccupied aerial systems (UASs) make high-resolution data easy to collect, researchers have begun to 
develop methods for measuring individual tree features automatically from remotely sensed data. The output from these methods must be 
compared to on-the-ground measurements, most commonly to forest inventories. Although forest inventories provide accurate per tree char-
acteristics, there is no method for measuring the global position of these inventories accurately and reliably. This prevents the ground measure-
ments from matching up with remotely sensed datasets. This study introduces a method for using UASs to reliably measure the coordinates of 
plot centers to within 10 cm of true position.
Keywords: digital forestry, forest inventory, unmanned aerial system, unoccupied aerial vehicle, photogrammetry

Forests provide invaluable ecosystem services but are con-
stantly challenged by climate change, disease outbreaks, and 
growing pressures from human population growth. Many 
forests across the globe have experienced an increase in tree 
mortality caused by the rising frequency and severity of fires, 
insects, disease, and extreme weather events (Allen, Breshears, 
and McDowell 2015; Fei et al. 2019; Hartmann et al. 2022). 
Some regions do not recover, whereas others experience shifts 
in the composition of tree species (Esquivel-Muelbert et al. 
2019; Fei et al. 2017). As these changes become ubiquitous, 
the ability of ecosystems to continue to produce a diverse 
range of ecosystem services will become degraded and in-
creasingly variable (Gauthier et al. 2014). In the face of these 
growing challenges, the forestry industry, the research com-
munity, and the public have begun to demand more data- 
driven decision-making and management founded on forest 
monitoring.

With the need for accurate wall-to-wall maps of forest bio-
metric features never higher, research into the application of 
remote sensing technology for forest management and mon-
itoring is garnering significant attention (Nitoslawski et al. 
2021). Although forestry has been an early adopter of remote 

sensing technology, little progress has been made in tailor-
ing the latest advances in automated feature extraction to the 
needs of foresters. Meanwhile, agriculture has taken advan-
tage of the recent developments in remote sensing, paving 
the way for variable-rate fertilization, automated harvesting, 
and yield prediction (Ashapure et al. 2020). Research is now 
attempting to bring this digital revolution to the world of for-
estry (Choudhry and O’Kelly 2018; Nitoslawski et al. 2021).

Both imagery and Light Detection and Ranging (LiDAR) 
technologies have been leveraged to map features of the 
world’s forests. Many forest features are detectable from sat-
ellite or airborne imagery. Tree density (Pinz 1991; Wulder, 
Niemann, and Goodenough 2000), canopy cover (Erker et al. 
2019; Tang et al. 2019), and leaf area index (Dafeng Zhang et 
al. 2019) are all critical parameters that are extractable using 
spaceborne, airborne, or unoccupied aerial system (UAS) 
based imagery. One of the major benefits of remotely sensed 
data is the ability to measure relatively large forested areas at 
multiple time periods (Lechner, Foody, and Boyd 2020). This 
allows for benchmarking and subsequent monitoring of for-
est restoration efforts (Camarretta et al. 2020; Daowei Zhang 
2019). The LiDAR technology is another remote sensing tool 
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currently being used for forest inventory. This technology is 
renowned for its ability to capture height information; LiDAR 
data allows additional features to be detected from the air, 
such as trunk location (Zhao, Popescu, and Nelson 2009), 
canopy height (Oh et al. 2022), trunk diameter at breast 
height (DBH) (Feng et al. 2022), and crown shape (White et 
al. 2016) to mention a few.

The forest feature maps created by remote sensing data 
require validation. For high-resolution maps aiming to depict 
features at the scale of individual trees, the most reliable val-
idation is on-the-ground measurement. This is where tradi-
tional forest inventories have been used. Although the exact 
protocol for completing traditional forest inventories var-
ies based on region and jurisdiction, the basic components 
remain consistent. Forest inventories are in situ measure-
ments of critical features of select trees within small sample 
plots dispersed throughout an area of interest (Fankhauser, 
Strigul, and Gatziolis 2018). Typically, these plots are marked 
with a center stake, especially for plots designed for repeated 
measures, and a fixed or variable radius is used to determine 
which trees fall within the plot (USDA Forest Service 2016). 
Although the primary purpose of forest inventories is to sam-
ple a population to determine the health, growth, characteris-
tics, and value of the forest stand, the recent focus on creating 
high-resolution forest feature maps from remotely sensed 
data has turned these inventories into valuable validation or 
training data for mapping algorithms (Kangas et al. 2018).

To allow ground measurements to be matched with remotely 
sensed features, geographic correspondence between the 
inventory site and the remotely sensed data must be accurate. 
As the resolution of the extracted features increases, so too do 
the requirements for accuracy. For instance, as highlighted by 
Edson and Wing (2012), attempts to remotely sense individ-
ual tree attributes require direct correspondence between the 
positions of remotely sensed trees and their ground references. 
To establish this correspondence, some studies have used tra-
ditional survey methods by traversing with total stations to 
establish plot center coordinates (Tomaštík et al. 2017; Wing 
2008), but typically, correspondence is established by mea-
suring the global coordinates of the plot center using global 
navigation satellite systems (GNSS) (Falkowski et al. 2008; 
Næsset et al. 2004).

The unfortunate fact is that the forest environment 
causes significant errors in coordinate measurements taken 
with either handheld navigation-grade devices or sur-
vey-grade GNSS receivers. Navigation-grade devices pro-
vide a low-accuracy solution, usually without differential 
processing, and are intended for navigation. Their error is 
often in the order of multiple meters (Wing 2008). Higher 
accuracy dual-frequency receivers, which usually support 
differential processing, have also been used under the forest 
canopy. However, the accuracy of the measurements col-
lected is unpredictable, with multi-meter errors common 
(Edson and Wing 2012; Naesset 2001). The resulting plot 
center location errors prevent the plot as a whole, and any 
subsequent inventory measurements that might be based 
on the erroneous coordinate, from being correctly mapped 
to the global reference frame. The USDA Forest Service 
has recognized this problem and has launched studies to 
develop more accurate methods for using GNSS to measure 
the global coordinates of their forest inventory and anal-
ysis plot centers to a higher degree of positional accuracy 
(Andersen, Strunk, and McGaughey 2022).

Errors in GNSS positioning within forested conditions are 
primarily caused by tree stems causing multipath or blocking 
the signal entirely. Multipath occurs when a satellite signal 
reflects off an object near the receiver, such as a tree trunk, 
causing the signal to deviate from the assumed direct path 
before reaching the receiver, degrading accuracy (Pirsiavash 
et al. 2019). Although modern GNSS receivers use hard-
ware design, stochastic mitigation methods, and discrimina-
tor design to detect and remove multipath-infected signals 
(Trimble 2020), often, too few signals remain unblocked by 
trees or uncensored by multipath filters for any position solu-
tion to be calculated, even one with high positional dilution 
of precision (PDOP) (Edson and Wing 2012). Some work has 
concluded that high accuracy can be achieved after long peri-
ods of observation and using differential processing (Naesset 
2001), prompting current protocols to recommend observa-
tions of many hours but not less than 15 minutes (Andersen, 
Strunk, and McGaughey 2022). However, as tree stems grow 
more densely together, their effect on the signals nullifies the 
potential gains of either long observations or differential 
processing (Edson and Wing 2012). Thus, although subme-
ter accuracy is possible under the canopy with survey-grade 
GNSS, it is far from a guarantee. For high-resolution remote 
sensing data, even single-meter positional accuracies are not 
high enough to validate the performance of tree-feature map-
ping methods.

Many papers proposing high-resolution feature-mapping 
algorithms list the error caused by horizontal misalignment 
between remotely sensed data and the forest inventory mea-
surements as a probable or significant source of error in 
validating feature extraction methods (Næsset et al. 2004). 
Fraser and Congalton (2019) describe the GNSS positional 
error of the forest inventory plot centers as a considerable 
concern that affected the level of confidence users could have 
in the statistical validity of the thematic maps. Hernández-
Stefanoni et al. (2018) point out that the accuracy of their 
derived aboveground biomass decreases as the accuracy 
of the coregistration of the LiDAR data and field plots is 
degraded. For lower-resolution feature mapping, increas-
ing the size of the area inventoried by on-the-ground mea-
surements decreases the effect of misalignment on features 
derived from remotely sensed data (Hernández-Stefanoni et 
al. 2018; Mayamanikandan et al. 2022). However, if features 
are to be detected at a higher resolution than the plot size, 
or the ground validation plot cannot be expanded (as is the 
case when inventory plots have historic data), coordinate 
error must be considered. To correct for the geolocation error 
between the plots and imagery, Dafeng Zhang et al. (2019) 
resorted to sending field crews to the plot sites, marking the 
location of each tree on a printed aerial map, and then using 
these notes to manually match the field measurements to the 
corresponding trees.

In this study, we introduce a method for determining inven-
tory plot centers to centimeter-level accuracy that is faster 
and more reliable than GNSS measurement. In our method, 
cost-effective targets are deployed at every plot center, then 
UAS imagery is captured over the area of interest during leaf-
off conditions. After processing the imagery and correctly 
georeferencing the data, plot center coordinates are manu-
ally extracted from the orthoimagery. These steps allow plot 
center coordinates to be measured with precision and accu-
racy not currently available using handheld navigation-grade 
GNSS units nor guaranteed using survey-grade receivers.

D
ow

nloaded from
 https://academ

ic.oup.com
/jof/article/121/3/262/7128297 by Purdue U

niversity (inactive) user on 12 Septem
ber 2023



264 Journal of Forestry, 2023, Vol. 121, No. 3

Materials and Methods
Study Site
The site of this study was Martell Forest, a 470 acre research 
forest in northern Indiana, USA (40.44105,−87.03353). The 
forest is predominantly comprised of temperate hardwood 
species such as oaks and hickories. A total of 112 plots scat-
tered throughout the forest have been monitored and updated 
regularly for several decades. Figure 1 shows the locations of 
all the plots throughout the forest.

Procedure
There were 112 forest inventory plot locations in this experi-
ment. A target was placed at the center of each plot. Because 
of the large number of plots, the price per target needed to be 
as low as possible. We constructed our targets from 9-inch-
wide strips of white house wrap, a water-resistant durable 
paper used for home construction that is available at most 
hardware stores. The paper was purchased on a 36-inch-wide 
roll and cut into four equal lengths with a carpenter’s saw. In 
the field, a knife was used to cut two 1.5-meter-long strips, 
then these strips were placed on the ground in an “X” forma-
tion over the center of the plot and staked down with 6-inch 
nails. Figure 2 shows one target deployed at a plot center. The 
orange stake in the center of the target is an iron pipe placed 
in the ground decades ago when the plot was first established. 
We cut a slit in the target paper to accommodate the center 
monument.

In dense deciduous forests, the ground is often obscured by 
the canopy. To see the targets at the plot centers, flights could 
only be conducted during the leaf-off season. We deployed 

our targets during the early weeks of March 2022 and flew 
over the site on March 16, 2022. March was chosen because 
the weather in Indiana has warmed to the degree that there is 
little threat of snowfall covering the targets but leaf flushing 
has not yet occurred. To capture the images necessary to build 
an orthoimage of the forest, we used a Matrice 300 platform 
mounted with a Zenmuse P1 RGB camera (DJI, Shenzhen, 
China). The flight parameters are listed in Table 1. The flight 
over the entire 470 acres of Martell Forest took 6 hours to 
complete and collected nearly eight thousand images. During 
the flight, we used the INCORS INWL base station main-
tained by the Indiana Department of Transportation and the 
Matrice’s RTK (real-time kinematic) capabilities to directly 
georeference each image. In this process, each image is tagged 
with the location of the camera at the time of capture. These 
locations are used during the photogrammetric reconstruc-
tion to constrain the camera locations, thereby improving 
accuracy and removing the requirement for ground control 
points (GCPs).

Although GCPs are not required when using direct georef-
erencing, we established seven GCPs in the flight area to vali-
date the photogrammetric reconstruction. Their position can 
be seen in figure 3. The GCPs were composed of permanent 
ground features and checkerboard targets. Where distinct 
permanent ground features were present, these were used as 
GCPs, as future flights could use the same ground control 

Figure 1.  Map of Martell Forest, Indiana, USA. The outline shows the 
forest’s boundaries. The crosses indicate the location of forest inventory 
plots.

Figure 2.  A ground-based image of a forest inventory plot center and 
aerial target. The plot center is marked by a pipe.
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points. In areas where the ground was visible from the air 
but no permanent features could be found (e.g., large areas 
of open grassland), checkerboard targets were deployed. The 
positions of all GCPs were measured using the Reach RS2 
(Emlid, Hong Kong, China) dual-frequency GNSS receiver 
using the INCORS INWL base station to perform RTK 
positioning.

After data collection, we processed the images to cre-
ate a point cloud and orthoimage of the forest. The raw 
images were processed using the photogrammetric process-
ing software Agisoft Metashape (version 1.7.1) (Agisoft, St. 
Petersburg, Russia). We followed the four-step procedure 
available in Metashape: align photos, build dense point 
cloud, build digital elevation model, and build orthomosaic. 
The “high accuracy” option was used to align photos. “Mild 
depth filtering” was implemented by Metashape while build-
ing the dense point cloud. Points that were reconstructed with 
only two images were manually filtered from the point cloud 
and then the digital surface model (DSM) and orthomosaic 
were created. The photogrammetric dense point cloud, the 

DSM, and the orthomosaic were exported from Metashape 
in the UTM Zone 16N (meters) projected coordinate system.

After reconstruction, the horizontal coordinates of the 
GCPs were sampled from the orthoimage using the Metashape 
interface. These were then compared with the coordinates 
measured during the GNSS survey. The difference between 
the two sets of horizontal coordinates was used to determine 
the linear shift to be applied to the data products, calculated 
by

T =

∑n
i=1 Pi − P ′

i

n
where T =

î
tx ty
óT

 is the shift moving the photogrammetric 
data products into the global reference frame, n is the number 
of GCPs (n = 7 in this experiment), Pi is the i-th GCP coordi-
nate as extracted from the uncorrected orthoimage, and P ′

i 
is the i-th GCP coordinate as measured by the GNSS survey. 
In our experiment, the shift T  was computed to be

T =
î
0.010m − 0.018m

óT

After this shift was applied, the coordinates of the same 
GCPs used to calculate T  were again sampled from the ortho-
image and DSM. The absolute horizontal error between the 
sampled coordinates and the GNSS coordinates was then 
calculated; Table 2 shows the results. The average horizontal 
error was 1.6 cm, approximately equal to the ground sam-
pling distance of the orthoimage (Table 1), with a standard 
deviation of 1.3  cm. This value describes the georeferenc-
ing precision of the orthoimage and photogrammetric point 
cloud.

Following the creation and correction of the photogram-
metric data products, the next step was to digitize the plot 
centers from the orthoimage and point cloud. We used QGIS, 
an open-source software for viewing, editing, and creating 
geospatial databases, to view and digitize the orthoimage. The 

Table 1.  The flight parameters of the UAS photogrammetry mission

Altitude 120 m 

Ground Sampling Distance 1.7 
cm

Overlap 80%

Sidelap 80%

Figure 3.  Map of Martell Forest, Indiana, USA. The crosses represent 
the position of permanent GCPs used to check the horizontal position of 
the orthoimage.

Table 2.  Absolute horizontal error of the 7 GCP coordinates determined 
after georeferencing by comparing target coordinates derived from the 
orthoimage to GNSS measurements.

Average error 0.016 m 

Standard deviation 0.013 m

Maximum error 0.045 m

 �
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orthoimage was opened in this software and the coordinates 
were manually measured. Figure 4 shows a few examples of 
the plot center targets in the imagery. Although the coordi-
nates were measured manually in this study to demonstrate 
the feasibility of this method, target extraction algorithms 
could be developed to automatically locate target centers if 
this location method were applied to a larger region.

For 5 of the 112 targets, the plot center target was too 
obscured by tree branches for an accurate coordinate to be 
measured from the orthoimage. Figure 5 shows one such case. 
Figure 5a shows the region of the orthoimage near a plot cen-
ter target. The “swirling” patterns around the target are caused 
by noise in the photogrammetric point cloud that is propa-
gated to the orthoimage. This happens most often where the 
thin branches of the upper canopy obscure the ground and 
provide few tie points for the image-matching routine built 
into Metashape’s photogrammetric reconstruction process. In 
such areas, the horizontal position of objects in the orthoim-
age is unclear. For the five obscured targets, we opened the 
photogrammetric point cloud in CloudCompare to measure 

the plot center coordinates. Figure 5b shows the same plot 
center as viewed in the photogrammetric point cloud. The tar-
get position is evident in the point cloud, and its coordinates 
can be measured with a higher degree of certainty.

In general, it is preferred to measure plot center coordinates 
from the orthoimage. The orthoimage has two advantages 
over the photogrammetric point cloud. First, the orthoimage 
is easier to open and navigate because raster data generally 
requires less RAM than a high-resolution point cloud of the 
same area. The speed of opening and navigating raster data 
can also be improved by using the QGIS built-in pyramid 
building. Second, coordinate measurement on raster data is 
continuous. This allows the digitizer to measure the coordi-
nate of the target centers without regard to pixel size or posi-
tion. In point clouds, however, the digitizer is required to pick 
a specific point in the point cloud to represent the target cen-
ter or, if no single point falls in the center of the target, must 
pick several points and interpolate a center. This adds further 
work and potential for error to the coordinate measurement 
procedure.

Figure 5.  In the orthoimage, occasionally the target may be obscured by branches (a). In these cases, the target can often be found more clearly in the 
photogrammetric point cloud (b).

Figure 4.  The inventory plot center targets as captured by the orthoimage. (a) Most targets were deployed in an X pattern. (b) However, based on 
ground conditions, forming an X shape was not always possible. In these cases, a half X was formed where the plot center can be located by finding 
the intersection of the legs of the half X.
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Results
Accuracy Assessment
To evaluate the expected accuracy of the plot center coor-
dinates derived using the method described above, the 
horizontal accuracy of the orthoimage georeferencing 
must be quantified along with the horizontal reliability of 
hand-digitized coordinates. The georeferencing accuracy 
of the orthoimage was calculated in the previous section 
and the results, shown in Table 2, indicate the georeferenc-
ing accuracy of the orthoimage to be 1.6 cm with a stan-
dard deviation of 1.3  cm. To determine the reliability of 
hand-digitized coordinates extracted from the orthoimage, 

we hand-digitized the coordinates of thirty permanent 
ground features scattered across the experiment site and 
compared them with coordinates digitized from a previous 
orthoimage of Martell created during the fall of 2021 using 
the same platform, flight parameters, and processing steps 
outlined above. Figure 6 shows the position of the perma-
nent ground features used for this validation, and Figure 7 
shows a few examples of these features.

The absolute error between a 2022 feature coordinate and 
its value as measured in 2021 was calculated as

εi =
»

∆ x2i + ∆ y2i
where εi  is the absolute horizontal error between test point 
i and validation point i, ∆ x = xi − x ′

i is the change in 
the × coordinate between the i-th pair of 2022 and 2021 
points, and ∆ y = yi − y ′

i is the change in the y coordinate 
between the i-th pair of 2022 and 2021 points. The error 
found between all test and validation points is summarized in 
Table 3. We found the average horizontal error of hand-digi-
tized points to be 2.3 cm with a standard deviation of 1.5 cm 
and a maximum error of 7.6 cm.

With both georeferencing accuracy and hand-digitization 
accuracy evaluated, the total positional uncertainty of the 
plot center measurements can be estimated. Given the follow-
ing equations,

εT = εG + εD

σT =
»

σ2
G + σ2

D

where εT  and σT  are the expected error and standard devia-
tion of the error in a plot center measurement, εG  and σG  are 
the expected error and standard deviation of the error georef-
erencing, and εD and σD are the expected error and standard 
deviation of the error in hand-digitization, we can calculate 
the estimated error in plot center coordinates measured using 
the proposed method to be

εT = 1.6+ 2.3 = 3.9cm

σT =
»
1.32 + 1.52 = 2.0cm

indicating that any plot center coordinate measured with the 
proposed method likely contains about 4  cm of horizontal 
error with a standard deviation of 2 cm. It should be noted 

Figure 6.  Map of Martell Forest, Indiana, USA. The crosses represent 
the position of permanent features used to check the reliability of manual 
coordinate measurement from the orthoimage.

Figure 7.  Examples of permanent objects used as comparison points. (a) The intersection of joint lines in a concrete patio. (b) The corners of a concrete 
sign pad. (c) The corner of an asphalt drive apron.
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that this error is dependent on the ground sampling distance 
of the orthoimage. In this study, the average horizontal error 
is estimated at twice the ground sampling distance.

Plot Center Coordinate Improvement
To quantify the improvement achieved with our method, 
we calculate the absolute horizontal error between all 112 
plot center coordinates extracted from the UAS imagery and 
the centers previously associated with each forest inventory. 
These previous coordinates had been measured with a naviga-
tion-grade GNSS receiver. These coordinates had been helpful 
for field crews looking for the plot centers, but, as our study 
shows, these coordinates did not have the necessary accuracy 
to correctly georeference the plot centers for comparison with 
high-resolution remotely sensed data. On average, the pre-
vious plot centers measured with navigation-grade receivers 
were 4.9 m different from our UAS-based measurements with 
a standard deviation of 4.3 m. These results are listed in Table 
4. Figure 8 shows examples of the navigation-grade GNSS 
position along with the position extracted using the proposed 
method over the orthoimage.

Discussion
Experiment Design
A critique of the accuracy assessment (detailed in the Accuracy 
Assessment section) is that the hand-digitized coordinates of 
the plot centers were never compared with known values. 
Some other studies that have investigated plot center posi-
tion have used total station traversing techniques to calculate 
high-accuracy plot center coordinates for validation (Edson 
and Wing 2012; Wing 2008; Tomaštík et al. 2017; Wing 
and Frank 2011). We decided against this method for three 
reasons. First, the size of the area for our experiments was 
significantly larger than in previous work. We implemented 
our method over 470 acres that contained 112 plot centers. 

Second, the time required to traverse through the forest to 
a statistically significant number of these plots was prohib-
itive. Finally, performing a complex traverse and achieving 
accurate and reliable results, especially in wooded and hilly 
conditions, is a difficult task even for experienced surveyors. 
Therefore, conducting a survey and using such data as vali-
dation would likely introduce more uncertainty into the accu-
racy of our work.

In this work, in lieu of a total station survey, we quanti-
fied the expected error in the georeferencing of the ortho-
mosaic and then quantified the expected error introduced 
by hand-digitization. These two measures are then combined 
to determine the expected error for any features digitized 
from the georeferenced orthomosaic. As discussed in the 
Procedures section, if a local distortion in the orthomosaic 
was visually detected, the photogrammetric point cloud was 
used for digitizing the target. However, it must be acknowl-
edged that there is some potential for minor positional errors 
in the photogrammetric reconstruction as branches move 
around during data collection, changing the patterns in the 
raw images used by Metashape to detect conjugate tie points. 
Although there is potential, the probability for this error is 
small because extensive point filtering was used during pro-
cessing to avoid tie points found in a few images (the most 
likely tie points to be erroneous). Past research studying the 
accuracy of hand-digitized coordinates extracted from photo-
grammetric reconstructions of targets positioned under leaf-
off canopy has found positional uncertainty similar to that 
presented in our work (Tomaštík et al. 2017).

It should also be noted that this study focused on the hor-
izontal position of the plot centers for three reasons. First, 
aerial imagery is the most common remotely sensed data 
used in the forest environment. Features detected from imag-
ery or other raster datasets often do not contain elevation 
data. Features are either planimetric or heights are relative, 
both of which do not need vertical information to accurately 

Table 3.  Absolute horizontal error between the coordinates of ground 
features hand-digitized from two different orthoimages of Martell Forest.

Average error 0.023 m 

Standard deviation 0.015 m

Maximum error 0.076 m

 �

Table 4.  Absolute horizontal error between GNSS-measured plot center 
coordinates and hand-digitized plot center coordinates.

Average error 4.875m 

Standard deviation 4.372 m

Maximum error 28.225 m

 �
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georeference plot centers for validation. Second, manual for-
est inventories usually do not encode vertical information. 
In manual forest inventories, typically an azimuth and dis-
tance to each tree within the plot are measured (USDA Forest 
Service 2016) and can be reduced to a local horizontal posi-
tion for each tree; however, the vertical position of each tree 
is not measured. Therefore, improving the vertical position of 
the plot center does not add additional validation accuracy to 
individual tree positions.

Practical Considerations
Measuring the coordinates of plot centers from precisely 
georeferenced UAS-based orthoimagery provides highly 
accurate and precise results. However, not all plot centers 
require this level of precision. To determine whether a given 
task requires submeter plot center measurement, we sug-
gest that the expected plot center coordinate error be com-
pared against the resolution of the remotely sensed feature. 
If the expected coordinate error is significantly smaller than 
the output resolution of the extracted feature, improving the 
coordinate measurement accuracy is likely inconsequential. 
Our method is ideal for high-resolution applications where 
the desired features are smaller than the forest inventory plot 
size. At this level of desired output detail, where individual 

stems must be distinguished or individual canopies segre-
gated, multiple meters of plot location error becomes sig-
nificant. Studies that use the azimuth and distance from the 
plot center to each tree within the plot to locate individual 
trees for remotely sensed feature validation (Falkowski et 
al. 2008), are primary targets for this method. Næsset et al. 
(2004) point out that errors of only a few meters will intro-
duce large variability in attempts to use field sample plots as 
training data to develop methods for completing forest-wide 
inventories.

An additional consideration when comparing the pro-
posed methodology to other plot center coordinate measur-
ing options is the use of UASs. The UASs are excellent tools 
for collecting high-resolution data over moderately sized 
areas. However, battery life and regulations that require line-
of-sight contact between the vehicle and the pilot limit the 
acreage that can be covered easily. For very large continuous 
expanses of woodland, access and clearings for takeoff and 
landing may make flights difficult or impossible to execute. 
It is also critical to consider airspace restrictions when plan-
ning flights. In most jurisdictions, special permitting is needed 
to access restricted airspace, especially around airports. We 
anticipate the proposed method being used on midsized proj-
ects that require high-accuracy plot center coordinates, such 

Figure 8.  Comparison between the digitized plot centers and the GNSS measured centers of four select plots. The center of each tile indicates the 
position of the plot center target as digitized from the orthoimage. The GNSS center coordinates are marked by a triangle. Concentric circles are drawn 
at 5 m and 10 m radii from the plot center for scale reference. These four plots graphically show the improvement in plot center accuracy achieved by 
the digitization process presented in this article.
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as building validation datasets for further development of 
UAS-based forest inventory technology.

Although the method of creating an orthomosaic image 
and hand-digitizing features is a reliable method for measur-
ing the coordinates of ground features, measuring features 
under the canopy requires line-of-sight from the UAS to the 
feature of interest. In nondeciduous forests, such as tropical 
forests or evergreen forests, meeting this requirement may be 
impossible. Our method is designed for deciduous forests or 
plot centers that are perennially visible from the sky.

Further, as implemented in this study, this method requires 
two visits to the plot location: a preflight visit to deploy 
the targets and a postflight visit to retrieve the targets. This 
takes time and effort. However, we determined that the time 
investment was less than that needed to complete long GNSS 
surveys and that the accuracy was superior to that available 
through GNSS. To remove the need for a second visit, we rec-
ommend using biodegradable products to construct the aerial 
targets. The house wrap used in this experiment can be sub-
stituted with tear-resistant biodegradable paper and wooden 
dowels can be used to pin the targets to the ground.

Contribution
Improved accuracy is the major advantage of our approach. 
This increase in accuracy is necessary for any high-resolution 
tree mapping methods that use forest inventory plots or any 
other ground-based sampling for validation. Our method 
ensures that these plot measurements are correctly georefer-
enced and align with remotely sensed data. It is best when 
used by projects that require UAS imagery. The orthoimag-
ery and DSM created to locate plot center locations have the 
potential to be used for other purposes such as tree counts or 
terrain modeling.

In addition to improved accuracy of sample locations, our 
method can save time in the field. If accurate plot centers are 
required for a study, using survey-grade GNSS receivers can 
require hours of observation time for each point measured. 
Even after long observation times, the accuracy of the final 
coordinate is not guaranteed. In our experiment, two of the 
authors hiked to 112 plot centers, searched for, and found 
the ground monument, and placed the “X” target at an aver-
age rate of 15–20 minutes per plot. Because the targets are 
quick to deploy, the time per target represents only the time 
to hike and find each plot center—time that would be spent 
regardless of the survey method. By removing long observa-
tion times, we significantly reduce time spent in the field.

Not only does our method save time in the field, but it also 
improves the safety and efficiency of field crews. Traditional sur-
veying tools such as total stations or survey-grade GNSS units 
are expensive, can be heavy, and require trained technicians to 
operate. In the forested environment, there are often hills and 
steep grades. These environments are often made more hazard-
ous by the thick layers of fallen leaves and branches that accu-
mulate on the forest floor. When hiking between plots located 
on uneven terrain, slips and trips are common. Carrying a sur-
vey-grade GNSS receiver mounted to the ubiquitous 2-meter-
tall rod with a bipod or tripod increases the risk of equipment 
damage or personal injury. Our method removes the need for 
heavy, expensive equipment. Target material can be carried in 
a backpack, which makes hiking far more manageable and less 
risky. Additionally, far less experience is needed for field crews 
to deploy targets.

Conclusion
Having accurate forest inventory plot center coordinate mea-
surement is a critical first step when using forest inventory 
plot data or other ground samples to validate the results of 
high-resolution forest features extracted from remote sensing 
data. Current methods of measuring plot centers often rely on 
navigation-grade or survey-grade GNSS receivers. However, 
both systems include significant horizontal uncertainty when 
measuring the coordinates of a point under the forest canopy. 
These positional errors degrade the validity of comparisons 
between field-based inventory data and remotely sensed fea-
tures. We proposed a methodology for locating plot centers 
in deciduous forests to an accuracy of ±4cm. Compared with 
current plot coordinate measurement methods, this accu-
racy is an improvement of several orders of magnitude. This 
method requires targets to be deployed at the plot centers and 
UAS-based imagery to be collected during leaf-off conditions. 
Leaf-on conditions or dense conifer forests will obscure tar-
gets. The coordinates of the plots can then be manually mea-
sured from the resulting orthoimage.

This method significantly improves the accuracy and reli-
ability of plot center coordinate measurements. It has the 
added benefit of saving time in the field, increasing safety, and 
being easily implemented by untrained personnel.
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