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ABSTRACT
Correcting the three-dimensional geometric error is essential to
effectively use the multi-temporal unmanned aerial vehicle (UAV)
orthophoto and digital surface model (DSM) acquired from the
agricultural field. Although ground control points (GCPs) obtained
through field surveys are usually used to calibrate geometrical
errors establishing/maintaining GCPs and surveying them in the
field are time-consuming and inefficient. Therefore, we propose a
simple and efficient methodology to improve the geometric regis-
tration of multi-temporal orthophotos and DSMs without GCPs. In
the proposed method, coarse to fine image registration is per-
formed first, which corrects severe to slight errors by sequential
feature and area-based matching methods. Subsequently, we
extract height-invariant regions in multi-temporal DSM pairs,
called elevation invariant feature (EIF), using the EIFs to register
DSMs by estimating a linear regression model. Various experi-
ments were conducted to analyze the absolute and relative accu-
racies using ten multi-temporal orthophotos and DSMs, and the
robustness of the proposed method was evaluated using data
obtained from another site. The experimental results demonstrate
that the geometric quality of registered orthophotos and DSMs
was significantly improved.
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1. Introduction

For several decades, remote sensing has been a core technology in agricultural applica-
tions because it can easily acquire geoinformation and crop data over agricultural land
(Bastiaanssen et al. 2000; Mulla 2013). It is crucial to periodically acquire reliable data to
monitor crop conditions (Zhang and Kovacs 2012). However, traditional remote sensing
using satellite and manned aircraft has limitations in accomplishing the task because of
reasons such as clouds, satellite revisit cycles, the high maintenance cost of aircraft, and
so on.
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Recently, with the expanding accessibility of unmanned aerial vehicle (UAV), acquiring
high-quality remote sensing data for agricultural applications is becoming a straightfor-
ward task. UAVs can be equipped with very-high-resolution (VHR) sensors to obtain
ultra-fine spatial resolution data (Chen et al. 2016; Yun 2017). Moreover, even consumer-
grade UAVs are equipped with a global navigation satellite system (GNSS) receiver on the
platform to log rough exterior orientation parameters of the acquired images (Nex and
Remondino 2014; Uysal et al. 2015). Thanks to the compact size of the platform and min-
imal operational crew requirements, UAVs can be easily deployed to acquire data on the
desired date without a complicated planning process (Honkavaara et al. 2013; Tsouros
et al. 2019). For these reasons, UAV is becoming a remote sensing platform for agricul-
tural applications as it can provide research scientists with more reliable and high-quality
remote sensing data while overcoming the limitations of the traditional airborne and
spaceborne remote sensing platforms.

Structure from motion (SfM) is an image processing technique to generate an ortho-
photo and a digital surface model (DSM) from raw UAV images (Rokhmana 2015;
Gomez and Purdie 2016). One can quickly produce orthophotos and DSMs from UAV
images using commercial software such as Pix4d Mapper and Agisoft Metashape.
However, even if UAV images are acquired under the same photography conditions for
the same area, the geometric properties between multi-temporal UAV orthophoto and
DSM differ due to various external factors such as the quality of GNSS sensors, wind con-
ditions, and platform attitude (Xiang and Tian 2011; Zhuo et al. 2017). Accordingly, a
three-dimensional (3D) geometric error between the geospatial data products may be
inevitable, causing inconsistent results in time-series agricultural applications (Wei et al.
2017; Chebrolu et al. 2018). This study aims to address this issue by developing an algo-
rithm to correct this error without relying on additional configuration.

Traditionally, ground control points (GCP) are often required to correct the 3D geo-
metric error. The 3D geometric error can be minimized by surveying their coordinates
and inputting the surveyed coordinates when generating the orthophotos and DSMs.
These tasks must be performed whenever UAV imagery is acquired to build accurate
time-series UAV orthophotos and DSMs. However, the GCP accuracy is affected by exter-
nal factors such as the quality of GPS signals, weather, and data acquisition time. In add-
ition, maintaining and surveying GCPs in the field setup is time-consuming and requires
significant effort (Han et al. 2019). Furthermore, if the GCP target in the image is not
identified, the whole UAV data collection campaign must be repeated (Kim et al. 2019).
Accordingly, various attempts have been made to correct the 3D geometric error with-
out GCPs.

Image registration is a method to unify the two-dimensional (2D) coordinates frames
between images using tie-points (Choi and Kim 2017; Han 2017; Chang et al. 2018). This
methodology is classified into area- and feature-based matching methods according to the
procedure of extracting the tie-points, which are core data for performing the registration
(Zitov�a and Flusser 2003; Huo et al. 2012). A UAV orthophoto has a very high spatial
resolution such that the features in images are clearly expressed. Thus, Wei et al. (2017)
extracted feature points using a Harris detector and performed image registration using
the feature points described by the local geometric structure feature and multi-feature
descriptors as tie-points. Tsai and Lin (2017) used an accelerated binary robust invariant
scalable keypoints (BRISK) algorithm to correct misalignment between UAV orthophotos.
Aicardi et al. (2016) performed image registration using tie-points extracted by the block-
based scale-invariant feature transform (SIFT) algorithm. Most image registration aims to
achieve accurate alignment by improving the performance of the feature-based matching
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method. However, crops are dynamic objects that change shape over growing seasons,
which makes it challenging to find good tie-points between multi-temporal orthophotos
(Raeva et al. 2019). Furthermore, similar spatial patterns are repeated in most agricultural
fields, and descriptor vectors of feature points are similar, in turn, increasing the possibil-
ity of mismatch (Wang et al. 2014). Accordingly, extracting reliable tie-points between
multi-temporal images acquired from the agricultural field is difficult.

Since the image registration focuses on reducing the 2D misalignment between images
without GCPs, it is not applicable for reducing the height dissimilarity between DSM.
The DSMs, which can be easily produced by images acquired from UAV, is key data for
agricultural applications due to its capacity to provide crop heights that can predict the
crop growth states or crop types (Kim et al. 2018; Maes and Steppe 2019; Zhang et al.
2021; Li et al. 2022). Accordingly, producing an accurate DSM is important; however, the
process of generating the accurate DSM needs GCPs, which requires a very time-consum-
ing task. Gruszczy�nski et al. (2022) registered the DSM by correcting UAV image-based
point clouds using a deep learning network to improve DSM production efficiency. Lee
and Oh (2021) modified the DSM by performing matching based on the 3D polynomial
model referring to the aerial DSM. Furthermore, Liu et al. (2021) generated an accurate
DSM by performing self-calibration based on high-precision synchronization between
cameras and the GNSS receiver. These approaches, however, have limitations to apply to
the farmland images and DSMs. The deep learning approach, for example, needs numer-
ous training data to achieve reliable results. Furthermore, the deep learning approach has
not been extensively explored to correct the height of already generated DSM. Matching
based on a 3D polynomial model, assuming that the topographic and object shapes
between DSMs are similar, may not work for multitemporal data collected over farmland
as the height of crops changes dynamically over the growing season.

Therefore, we propose a simple and efficient approach for improving the geometric
correspondence of multi-temporal UAV orthophotos and DSMs acquired over farmland
without using GCPs. Coarse to fine image registration that sequentially uses feature- and
area-based matching methods is proposed to correct the orthophotos. This registration
method aims to correct the orthophoto robustly without GCP independent of time-series
changes. Subsequently, the height of the DSMs is corrected using the data considering the
measurement of topography within the farmland. The fundamental mechanism of the
proposed height registration is to compensate the DSM height to be similar to the ground
using the elevation invariant feature (EIF), which is the data of the height-invariant
regions between DSMs.

The contributions of this study are: 1) the proposed method effectively registers from
severe to slight misalignments of orthophotos without GCPs using the advantages of each
feature- and area-based matching method; 2) the proposed method corrects the DSM
height without additional data like GCPs using EIFs extracted from the height-invariant
regions between DSMs; 3) the proposed method builds accurate time-series orthophotos
and DSMs by performing GCP acquisition only once to generate the reference orthophoto
and DSM; 4) finally, the performance and accuracy of the proposed method are confirmed
through various experiments using the assessment data acquired from field surveying.

2. Methodology

The proposed method aims to minimize 3D geometric error of multi-temporal UAV
orthophotos and DSMs without GCPs by referring to the precise 3D coordinates of the
reference orthophoto and DSM generated by UAV imagery with GCPs. As shown in
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Figure 1, the proposed methodology consists of two main steps; 1) coarse to fine image
registration, 2) DSM registration. Tie-points between reference and target orthophotos are
extracted using the speeded-up robust feature (SURF) algorithm with a restricted search-
ing space in the coarse registration step. The mutual information (MI) algorithm is then
used in the fine registration step. The mismatched tie-points are removed, and the target
orthophoto is registered to the reference one by estimating the affine transformation
model. Subsequently, height values of non-vegetation areas are extracted as EIFs using the
vegetation index, and outliers are removed through a statistical Z-score method estimated
by the difference in height values between the EIFs. Finally, the target DSM is registered
to the reference DSM using a linear regression model estimated based on the EIFs.

2.1. Coarse image registration using feature-based matching method

The feature-based matching method extracts tie-points by measuring the similarity
between descriptors of feature points extracted from clearly identified regions within an
image (Huo et al. 2012; Du et al. 2017; Li et al. 2017). Hence, this method can extract tie-
points robust to scale and rotation even when misalignment and distortions between
images are severe (Oh and Han 2020). However, the matching reliability of the feature-
based matching method decreases because repetitive patterns in the farmland imagery
cause ambiguous similarity between descriptor vectors (Hasheminasab et al. 2020).
Therefore, we attempt to reduce the severe misalignment, rather than completely correct-
ing the misalignment in the coarse image registration stage. To this end, the SURF algo-
rithm is used for performing the coarse image registration as the SURF algorithm has

Figure 1. Schematic diagram of the proposed coarse to fine image registration and DSM registration.
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similar performance as the SIFT algorithm, but it can extract tie-points quicker (Zhang
et al. 2020; Kim and Han 2021). Furthermore, tie-points are extracted from the SURF
algorithm after downsampling the orthophoto to maximize tie-points extraction efficiency.

The SURF algorithm applies the approximated Hessian box filter to the integrated
image and extracts a feature point when the corresponding value is the maximum (Bay
et al. 2008). The approximated Hessian box filter is generated based on a Gaussian second
derivative defined by Equation (1). Then, the orientation of the extracted feature points is
assigned, and a descriptor vector is generated to describe them.

H q,rð Þ ¼ j Lxxðq,rÞ Lxyðq,rÞ
Lxyðq,rÞ Lyyðq,rÞ j (1)

where H q,rð Þ is a Hessian matrix with Lxx q,rð Þ, Lxy q,rð Þ, and Lyy q,rð Þ that are the
Gaussian second derivative results associated with the xx, xy, and yy directions,
respectively.

The general tie-point extraction method compares the similarity between the described
feature point of the reference image and all described feature points of the target image.
Then, the most similar feature point pair between reference and target images are
extracted as a tie-point (Wang et al. 2014). This method can universally be used when
image contains various feature types, such as urban areas. However, the possibility of a
mismatch between the feature points increases, when the features in the images are repeti-
tively configured in a particular pattern, such as farmland (Wei et al. 2017). Therefore, we
use a searching space to effectively consider spatial characteristics between feature points
by limiting the area for comparing similarities. The ground coordinates of the feature
points extracted from the reference image are estimated and converted into image coordi-
nates of the target image. Then, the searching space is generated based on locations corre-
sponding to each other. The most similar feature point pair is extracted as a tie-point by
evaluating the similarity between the feature points included in the searching space.

To perform coarse image registration, a transformation model should be constructed
using the tie-points. In this study, an affine transformation model is used that considers
the relationships of scale, nonorthogonality, rotation, and translation between the tie-
points (Han et al. 2014), defined as follows:

X ¼ a0 þ a1xþ a2x
Y ¼ b0 þ b1yþ b2y

(2)

where X, Y are the coordinates of reference orthophoto tie-points, x, y are the coordi-
nates of the target orthophoto tie-points, and a0, b0 … a2, b2 are the independent affine
transformation coefficients.

However, mismatched points that cause distortion when estimating the affine trans-
formation coefficients are included among the extracted tie-points. In this study, we con-
sider the tie-points that are unsuitable for construction in the affine transformation model
as mismatched points and eliminate them. The affine transformation model is constructed
using the tie-points extracted from each image, and the tie-points of the target image are
converted into reference image coordinates. Then, the root-mean-square error (RMSE)
determining the distance difference between the tie-points is estimated, and the tie-point
with the largest RMSE is considered mismatched and eliminated. These processes are
repeated until the RMSE is lower than the threshold value. The tie-points without mis-
matched points are restored to the coordinates of the raw image with the scale factor
used in the previous downscaling. The coarse image registration is performed using the
estimated affine transformation model based on the restored tie-points.
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2.2. Fine image registration using area-based matching method

The area-based matching method can extract numerous tie-points even when there are no
features between images (Bentoutou et al. 2005; Ye et al. 2020). However, it is difficult to
extract the tie-points when the misalignment is severe (Paul and Pati 2021). The purpose
of fine image registration step is to correct the slight remaining misalignment between
images. Hence, the reliability of the extracted tie-points is important. In this study, the
fine image registration is performed using the MI algorithm, a representative area-based
matching algorithm.

The MI algorithm measures the statistical correlation between the templates of the
images. Then, the location with the highest similarity is extracted as a tie-point (Viola
and Wells 1997; Gong et al. 2014). The reference and coarsely registered images are seg-
mented by referring to the size of the template. The probability distribution between tem-
plates of the reference and the coarsely registered target images is estimated, and the 2D
joint histogram is generated by combining the pixel values of the reference and coarsely
registered images. Subsequently, the joint probability density function is generated based
on the 2D joint histogram. The probability distribution of the reference and coarsely reg-
istered target images, the 2D joint histogram, and the joint probability density function
are sequentially defined by Equations (3) (4), and (5):

pRef
�
aÞ ¼

X
b

pRef , Tarða,bÞ (3)

pTar
�
bÞ ¼

X
a

pRef , Tarða, bÞ (4)

pRef ,Tar a,bð Þ ¼ hða, bÞP
a,b hða, bÞ

(5)

where pRef ðaÞ and pTarðbÞ represent the probability distribution of reference and target
images, respectively; hða, bÞ is the combined histogram for reference and target images; a
and b represent the axes for reference and target images, respectively; and pRef ,Tarða, bÞ is
the combined probability density function of reference and target images.

The entropy of each image is generated using the joint probability density function
and the probability distribution of each image defined by Equations (6) and (7). The com-
bined entropy is calculated using the probability distribution of each image defined by
Equation (8). Subsequently, MI is estimated using the entropy and combined entropy for
each image defined by Equation (9), and the pixel with the highest MI between images is
extracted as a tie-point. The tie-points are extracted from each segmented region by refer-
ring to the template size through these mechanisms. The mismatched points removal pro-
cess is performed in the same way as a step of coarse image registration. Finally, fine
image registration is performed by constructing the affine transformation model based on
the tie-points without mismatched points.

H Refð Þ ¼ �
X
a

pRef ðaÞlog pRef ðaÞ (6)

H Tarð Þ ¼ �
X
b

pTarðbÞlog pTarðbÞ (7)

H
�
Ref ,TarÞ ¼ �

X
a, b

pRef ,Tarða,bÞlog pRef ,Tarða,bÞ (8)

MI Ref ,Tarð Þ ¼ H Refð Þ þ H Tarð Þ �HðRef ,TarÞ (9)
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where H Refð Þ and H Tarð Þ are the entropy of reference and target orthophotos, respect-
ively; HðRef ,TarÞ denotes the combined entropy of the reference and target orthophotos;
and MI Ref ,Tarð Þ represents the MI between reference and target orthophotos.

2.3. DSM registration using EIFs

DSM is 3D data that expresses the height of objects and terrain for use as basic data in
various fields. Recently, the DSM can be simply generated by using UAV images, but
there is a limit to accurate height estimation without using GCPs. However, acquiring
GCPs by performing field surveys and inputting GCPs in generating orthophotos and
DSMs are time-consuming tasks. The DSM height without GCPs can be corrected using a
polynomial model that minimizes the difference in height values of the same location
area between accurate and inaccurate DSMs (Lee and Oh 2021). In this study, we extract
the data with a linear relationship between multi-temporal DSMs by considering the char-
acteristics of farmland according to the time-series change to correct the DSM.

The height of the crops in farmland is inconsistent because the shape changes rapidly
based on the growth cycle (Gruszczy�nski et al. 2019). These height values of crops prevent
estimating accurate DSM registration model coefficients. It is difficult to use the height
value of crops in vegetation areas as data for DSM registration because the height value
of crops causes errors. In contrast, ground and artificial structures, which are non-vegeta-
tion areas, are regions with invariant height because they do not change shape regardless
of seasonal changes. The relative height deviation between DSMs can be identified based
on the height value of these non-vegetated areas to estimate the accurate model coeffi-
cients for correcting DSMs. Therefore, we defined the height value of the non-vegetation
areas between DSMs as EIFs and present in this paper a specific method for extracting
EIFs extraction.

The vegetation index (generated by combining some wavelength bands of the image) is
effective in extracting and analyzing crops because it expresses the growth status of the
crops quantitatively (Na et al. 2018). Therefore, we extract the ground and artificial struc-
ture data as EIFs, using the vegetation index based on the optical sensor wavelength.
Various vegetation indices can be generated using only red, green, and blue wavelengths.
According to studies by Torres-S�anchez et al. (2014) and Yeom et al. (2019), excess green
(ExG) developed by Woebbecke et al. (1995) outperforms other RGB-based vegetation
indices. Therefore, we use the ExG to extract the ground and artificial structures as EIFs.
The ExG is defined as:

ExG ¼ 2Gn � Rn � Bn (10)

Rn ¼ R
Rþ Gþ B

Gn ¼ G
Rþ Gþ B

Bn ¼ B
Rþ Gþ B

where R, G, B are red, green, and blue band reflectance, respectively.
The ExG has high values for vegetation areas and low values for non-vegetation areas.

Thus, an additional task must be performed to classify the two areas by estimating the
threshold value. In this study, the vegetation and non-vegetation areas are classified based
on the threshold value estimated using the Otsu algorithm. However, the vegetation and
non-vegetation areas of the binarized ExG image for each image are represented differ-
ently because the status and spectral characteristics of the crops differ between the images.
Therefore, each binarized ExG is overlapped to extract common non-vegetation areas
between the images. Then, the elevation values of the DSMs corresponding to the location
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of the common non-vegetation areas between the reference and target images are
extracted as EIFs.

The extracted EIFs include outliers because it is impossible to completely distinguish
vegetation and non-vegetation areas using the threshold value estimated by the Otsu algo-
rithm. The outliers cause distortion in estimating the DSM registration model coefficients,
so they must be eliminated. In this study, the outliers are eliminated using a normalized
Z-score estimated based on the difference between the EIFs.

The difference between the reference and target EIFs is estimated as in Equation (11).
Subsequently, the mean and standard deviation values are estimated to calculate the nor-
malized Z-score as defined in Equation (12). The height invariant is robust as the normal-
ized Z-score value is closer to 0. Therefore, EIFs with a normalized Z-score value
corresponding to the lower 30% were only used for the DSM registration by eliminating
others.

DEIFs ¼ EIFsRef � EIFsTar
�� �� (11)

NEIFs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DEIFs�lDEIFs

rDEIFs

� �2
s

(12)

where DEIFs is the EIFs differences; EIFsRef and EIFsTar are the EIFs of the reference and
target DSMs, respectively; NEIFs represents the normalized Z-score; lDEIFs

is the mean of
the EIFs difference; and rDEIFs represents the standard deviation of the EIF difference.

The EIFs were used to register the DSM using a linear regression model. The offset
and gain of the model are defined by Equations (13) and (14), respectively:

Y 0 ¼ aX þ b (13)

a ¼
rEIFs
Ref

rEIFs
Tar

, b ¼ lEIFsRef � alEIFsTar (14)

where Y 0 represents the corrected target DSM; X is the target DSM; a and b are registra-
tion coefficients of the gain and offset, respectively; rEIFs

Ref and rEIFs
Tar are the EIF standard

deviations of reference and target DSMs; and lEIFsRef and lEIFsTar represents the EIF means of
the reference and target DSMs.

3. Experimental data set description

The farmland located in Sangju City, South Korea, was selected as the experimental site
to evaluate the performance and accuracy of the proposed method (Figure 2). The site
comprises field crops such as peppers, soybeans, sesame, perillas, and rice paddies.

Multi-temporal UAV images used in the experiment were acquired by mounting the
optical sensor Zenmuse X4S on the Inspire-2, a rotorcraft UAV. UAV images were
acquired through 10 flights over approximately four months, from June 21, 2019, to
October 4, 2019. The image acquisition conditions were similar, at an acquired time
around 10–11 am, an altitude of 30m, a vertical and horizontal overlap of 80%, and a
flight speed of 5–7m/s. 10 orthophotos and DSMs were produced using Metashape soft-
ware based on the acquired multi-temporal UAV images. Moreover, some orthophotos
and DSMs were generated by inputting GCPs acquired by a field survey. The specifica-
tions of the UAV, optical sensor, and GNSS receiver used in this study are presented in
Table 1. The specifications of the multi-temporal orthophotos and DSMs are shown in
Table 2.
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An accuracy evaluation was performed on datasets with GCPs survey results. Among
the surveyed GCPs, a half was used for modelling the orthophoto and DSM, and the
remaining GCPs were used as checkpoints to evaluate the performance of the proposed
algorithm (Figure 3). The accuracy of each orthophoto and DSM is presented in Table 3,
derived by estimating the RMSE in X, Y, and Z directions. Consequently, the UAV

Figure 2. Experimental site: Sangju City, Gyeongsangbuk-do. South Korea.

Table 1. Specifications of equipment to acquire experimental data.

Inspire-2 Zenmuse X4S Trimble R8s

Weight 3,440 g Sensor Optical Channels 440
Flight altitude � 2500m Resolution 5472 � 3648 Satellite signals GPS: L1C/A, L1C, L2C, L2E, L5
Flight time 27min Focal Length 8.8mm VRS precision Horizontal: 8mm þ 0.5 ppm RMS

Vertical: 15mm þ 0.5 ppm RMS
Speed � 94 km/h Weight 253 g Static Precision Horizontal: 3mm þ 0.1 ppm RMS

Vertical: 3.5mm þ 0.4 ppm RMS

Table 2. Specification of time-series orthophotos and DSMs.

Acquisition date Scene size (unit: pixel) Spatial resolution

2019-06-21 9142 � 12037 Approximately 1 cm
2019-07-09 (with GCPs) 9427 � 12606
2019-07-22 9409 � 12177
2019-08-01 (with GCPs) 9721 � 12426
2019-08-14 (with GCPs) 9355 � 12345
2019-08-20 (with GCPs) 9500 � 12612
2019-09-06 9229 � 12485
2019-09-10 10262 � 13595
2019-09-23 9968 � 13469
2019-10-04 10301 � 13697
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orthophoto and DSM acquired on 2019-08-01 in which the total error was the lowest
were selected as reference data.

Radiometric calibration for the optical sensor is performed using reflectance panels
with intrinsic reflectance. The reflectance provided in the reflectance panels is linearly
related to the brightness value of the image. Thus, the radiometric calibration can be per-
formed by constructing a linear regression model (Wang and Myint 2015). In this study,
four reflectance panels with surface reflectance obtained using a Perkin-Elmer Lambda
1050 spectroradiometer are used for radiometric calibration.

4. Experimental results and analysis

To confirm the performance of the proposed method, we performed an analysis of the
results with one representative dataset, and the related description is given in Section 4.1.
In Section 4.2, an absolute accuracy assessment was carried out based on UAV datasets
collected together with GCP surveying data. Finally, relative accuracy was assessed for all
the multi-temporal orthophotos and DSMs in Section 4.3.

4.1. Results of orthophoto and DSM registration

In this section, we visually accessed the results of registered orthophoto and DSM pro-
duced by applying the proposed method. Specifically, we analyzed the distribution of tie-
points and identified the registration results by generating mosaic images before and after
registration. Moreover, the extraction results of the EIFs were analyzed, and the registered
DSM was expressed as point clouds for visual analysis.

Figure 3. Distribution of GCPs and checkpoints used in experiments.

Table 3. Accuracy of multi-temporal orthophotos and DSMs with GCPs (unit: cm).

Acquisition date X error Y error Z error Total error

2019-07-09 1.308 1.364 6.149 6.433
2019-08-01 1.081 0.934 5.392 5.515
2019-08-14 0.691 1.140 11.180 11.259
2019-08-20 1.154 0.540 10.781 10.856
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To perform coarse image registration, tie-points were extracted using the SURF algo-
rithm and searching space, and mismatched points were eliminated. The size of the
searching space was set to 400� 400 pixels, determined by empirical analysis on the
experimental sites. Most of the tie-points were extracted from clearly identified areas such
as the road, farmland division line, and boundary (Figure 4a). Subsequently, we extracted
tie-points for fine registration using the MI algorithm while moving the 400�400 size
template at 200-pixel intervals. Mismatched points were removed using the same method
as the coarse registration step. As a result, the tie-points were distributed on the road and
farmland between images (Figure 4b). The tie-points for fine registration tend to be
located in areas with similar spectral characteristics between images. These results indicate
the characteristics of each matching method.

Mosaic images before and after performing image registration were generated for visual
analysis. Furthermore, a comparative analysis was performed to confirm the differenti-
ation of the proposed method compared with other methods. Accordingly, we generated
mosaic images of the registration results produced independently with the SURF and MI
algorithms (Figure 5). The reference orthophoto is expressed as Red, Green, and Blue
(RGB), and the target orthophoto (2019-06-21) is expressed as Blue, Green, and Red
(BGR), in the mosaic images. In the mosaic image before registration, the roads and
objects were misaligned between the images (Figure 5a). The SURF algorithm and the
proposed method successfully aligned the discrepancy between images (Figure 6b and d).
However, the misalignment was significantly more severe than the raw image when using
the MI algorithm (Figure 5c). Additionally, we evaluated the registration results between
the proposed method and the SURF method by visually checking parts of the mosaic
images as shown in Figure 6. Although the overall misalignment was minimized when
using the SURF algorithm, the slight misalignment remained (Figure 6a). Conversely, the
proposed method reduced the remaining slight misalignment (Figure 6b). Therefore, the
proposed method corrected the misalignment sequentially using the feature-and area-
based matching method.

After carrying out registration, ExG image was generated by combining the optical
bands of each image to correct the DSM height without GCP. Each ExG image was binar-
ized into vegetation and non-vegetation areas based on the threshold value estimated
using the Otsu algorithm. Then, each binarized ExG image was overlapped, and the
height values corresponding to the common non-vegetation areas between images were

Figure 4. Results of extraction of tie-points using proposed method: (a) Coarse image registration and (b) Fine image
registration.
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Figure 5. Mosaic images of image registration results using SURF, MI, and proposed methods: (a) Raw image, (b)
SURF algorithm, (c) MI algorithm and (d) Proposed method.

Figure 6. Magnified examples of mosaic images: (a) SURF algorithm and (b) Proposed method.

Figure 7. Results of extracting EIFs: (a) Reference image, (b) Target image, (c) Reference DSM, and (d) Target DSM.
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extracted as EIFs. As a result, most EIFs were extracted from non-vegetation areas as
shown in Figure 7. However, some EIFs extracted from the vegetation area were still
included. These outliers were removed by applying normalized Z-score values. As pre-
sented in Figure 8, EIFs after removing outliers were mainly remained on road and
ground areas.

Subsequently, target DSMs were registered by calculating a linear regression model
based on the EIFs. To visually assess the DSM registration results, each DSM was con-
verted into point clouds and expressed in 3D space as shown in Figure 9. The point
clouds of reference DSM are expressed as red, and the point clouds of the raw and cor-
rected DSMs are black and blue, respectively. The point clouds of the raw DSM were gen-
erated at approximately 115–125m in height. In contrast, the point clouds of the
corrected DSM were generated at approximately 83–95m, similar to the height of the ref-
erence DSM. The proposed method corrected the terrain height and the height of objects
such as crops, and trees, similar to the reference DSM. Therefore, the EIFs extracted from
non-vegetation areas reflected the relative elevation deviation between the reference and
target DSMs.

Figure 8. Results of extracting EIFs after eliminating outliers: (a) Reference image, (b) Target image, (c) Reference
DSM, and (d) Target DSM.

Figure 9. Point cloud of each DSM in 3 D space. Point clouds of reference DSM are red, and point clouds of raw and
corrected DSMs are black and blue, respectively.
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4.2. Accuracy assessment of corrected orthophotos and DSMs

In this section, the absolute accuracy of the registered orthophotos and DSMs using the
proposed method are evaluated. To this end, datasets with available checkpoints acquired
using a GNSS receiver were used. The checkpoints exist only in four datasets among the
experimental data in Table 2. Therefore, the absolute accuracy assessment was performed
on three datasets except for the reference data by estimating the RMSE based on the
checkpoints.

Each experimental orthophoto was reconstructed for five cases to analyze the accuracy
of the corrected orthophoto: 1) orthophoto generated with GCPs (baseline); 2) orthophoto
generated without GCPs; 3) registered orthophoto using the SURF algorithm; 4) registered
orthophoto using the MI algorithm; 5) registered orthophoto using the proposed method.
The absolute accuracy assessment was focused on a comparative analysis based on the
reconstructed orthophotos in these five cases.

The estimated RMSEs based on the checkpoints of each orthophoto are given in Table
4. The average RMSEs of the orthophoto generated with GCPs were estimated as 0.011
and 0.010m in the X and Y directions, respectively. Because the orthophoto without
GCPs was generated using the coordinate of the UAV GNSS receiver, the average RMSEs
were estimated as 0.420 and 1.181m in the X and Y directions, respectively. In the regis-
tered orthophoto using the SURF algorithm, the RMSEs in both directions were estimated
as lower than the orthophoto generated without GCPs. The average RMSEs were esti-
mated as 0.075 and 0.055m, which decreased by approximately 5.6 and 21 times in the X
and Y directions compared with the orthophoto without GCPs, respectively. Conversely,
the RMSEs in both directions of the registered orthophoto using the MI algorithm was
estimated as significantly larger than the orthophoto without GCPs. In the corrected
orthophoto using the proposed method, the positional accuracy was improved compared
with the case of using the SURF algorithm; the average RMSE was estimated to be 0.024
and 0.037m in the X and Y directions. These results demonstrate that the proposed
method can correct an orthophoto generated without GCPs with a positional accuracy
similar to one generated with GCPs. In addition, the superiority of the proposed tech-
nique can be visually confirmed as shown in Figure 10.

Each experimental DSM was reconstructed for three cases to evaluate the accuracy of
the corrected DSM: 1) DSM generated with GCPs (baseline); 2) DSM generated without
GCPs; 3) registered DSM using the proposed method. The accuracy assessment for DSMs
focused on whether the proposed method can improve the elevation of the DSM similar
to the DSM generated with GCPs.

The RMSEs based on the checkpoint elevations of each formation of DSM are sum-
marized in Table 5. The RMSEs of the DSMs with GCPs for each acquisition date were
estimated between 0.061 and 0.112m. The DSMs without GCPs of the experimental data
were generated based on the relative elevation acquired from the UAV GNSS receiver.
Thus, the average RMSE was estimated as 30.433m. The elevation RMSE for each acquisi-
tion date was estimated to be larger than the RMSEs in the X and Y directions. In the

Table 4. Results of estimating the RMSE of each orthophoto using the checkpoints (Unit: m).

Acquisition
date

Orthophoto with GCPs Orthophoto without GCPs SURF algorithm MI algorithm Proposed method

X Y X Y X Y X Y X Y

2019-07-09 0.013 0.014 0.415 1.186 0.036 0.076 1.588 6.550 0.036 0.050
2019-08-14 0.007 0.011 0.444 1.372 0.051 0.034 2.185 9.419 0.014 0.025
2019-08-20 0.012 0.005 0.402 0.986 0.139 0.055 1.384 5.478 0.021 0.035
Average 0.011 0.010 0.420 1.181 0.075 0.055 1.719 7.149 0.024 0.037
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corrected DSM, the RMSE of each acquisition date significantly decreased compared with
the DSM without GCPs. Consequently, the average RMSE was estimated as 0.151m,
which is an improvement of more than 30m compared with the average RMSE of the
DSMs without GCPs. Comprehensively, these results demonstrate that the elevation of the
DSM without GCP can be corrected similarly to a DSM with GCPs using the proposed
method. Furthermore, the elevation deviation between the multi-temporal DSMs was
minimized as shown in Figure 11, because the elevation of the DSM without GCPs was
corrected similarly to the absolute ground elevation.

Figure 10. Mosaic images of orthophotos registered by proposed method: (a) Before registration of 2019-07-09 ortho-
photo, (b) Before registration of 2019-08-14 orthophoto, (c) Before registration of 2019-08-20 orthophoto, (d) After
registration of 2019-07-09 orthophoto, (e) After registration of 2019-08-14 orthophoto, and (f) After registration of
2019-08-20 orthophoto.

Table 5. Estimated RMSEs of each formation DSM using checkpoints (Unit: m).

Acquisition date DSM with GCPs DSM without GCPs Corrected DSM

2019-07-09 0.061 8.510 0.214
2019-08-14 0.112 55.852 0.156
2019-08-20 0.107 26.937 0.082
Average 0.093 30.433 0.151
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4.3. Results of time-series orthophotos and DSMs

Accurate time-series orthophotos and DSMs are required to acquire data based on the
growing season of crops for agricultural applications. Based on the previous assessment
results, the geometric accuracy of orthophotos and DSMs generated by applying the pro-
posed method are similar to those generated with GCPs. Therefore, we registered to gen-
erate the time-series orthophotos and DSMs listed in Table 2 using the proposed method.

Unfortunately, not all datasets have GCPs with GNSS surveying. Additional reference
data are needed to evaluate the accuracy of registered multi-temporal orthophotos and
DSMs. Therefore, we selected seven relative checkpoints (RCP) for accuracy assessment
by visually identifying the invariant regions between the reference and the multi-temporal
data as shown in Figure 12. All RCPs were extracted from the ground or road where the
location and height are the same regardless of the acquisition conditions.

The corrected multi-temporal orthophotos using the proposed method were analyzed
by comparing the results of the SURF and MI algorithms. Besides, RMSEs before and

Figure 11. Point clouds of multi-temporal DSMs: (a) 2019-07-09 DSM, (b) 2019-08-14 DSM, and (c) 2019-08-20DSM.
Point clouds of reference DSM are red, and point clouds of raw and corrected DSMs are expressed as black and blue,
respectively.
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after registration were estimated by considering both X and Y directions based on RCPs
to confirm the accuracy of large amounts of data.

Table 6 presents the RMSEs for the registration results of each method. The average
RMSE of the orthophoto without GCPs was estimated as 0.916m. With the SURF algo-
rithm, the misalignment between reference and most orthophotos was minimized, such
that the average RMSE was reduced to 0.861m. However, the misalignment between ref-
erence and 2019-09-23 and 2019-10-04 orthophotos became severe, increasing the RMSE.
When using the MI algorithm, the misalignment of the corrected orthophoto became
more severe than the orthophoto without GCPs, and the average RMSE was estimated as
2.889m. The RMSE of the proposed method was estimated to be the lowest value among
the results. Hence, the average RMSE was estimated as 0.034m. The proposed method
corrected the misalignment in the orthophotos (2019-09-23 and 2019-10-14) for which
the SURF algorithm failed. Comprehensively, these results demonstrate that an accurate
time-series orthophoto for agricultural applications was successfully generated using the
proposed method.

The accuracy of corrected multi-temporal DSM was evaluated as follows: 1) box plot
of each DSM and 2) RMSE based on RCP. A box plot is generated by estimating the

Figure 12. Distribution of selected RCP: (a) Location and (b) Examples.

Table 6. RMSEs of image registration results (Unit: m).

Acquisition date without GCPs (no registration) SURF algorithm MI algorithm Proposed method

2019-06-21 0.822 0.541 3.276 0.039
2019-07-22 0.921 0.241 2.438 0.019
2019-09-06 1.132 0.314 3.670 0.055
2019-09-10 0.961 0.516 3.356 0.027
2019-09-23 0.918 1.906 2.094 0.025
2019-10-04 0.744 1.647 2.503 0.044
Average 0.916 0.861 2.889 0.034
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minimum, maximum, median, first quartile, and third quartile values of the data and
expresses the statistical characteristics of the various data in one space. Because a box plot
is generated using the height of the DSM before and after DSM registration, the height
change of the DSM can be analyzed intuitively.

The box plots generated based on the height value of the DSM before and after DSM
registration are depicted in Figure 13. The box plot (indicated by the yellow box) illus-
trates the reference DSM, and the red dotted line represents the box plot maximum-min-
imum value range of the reference DSM. Before DSM registration, the height ranges of
the DSM box plots of 2019-06-21 and 2019-07-22 are higher than the reference DSM box
plot, whereas those of the other DSM box plots are lower than that of the reference DSM
(Figure 13a). After conducting DSM registration, the height range of corrected DSM box
plots was expressed similarly to the reference DSM box plot (Figure 13b).

The proposed method corrected the height of the target DSM even when the relative
height deviation was significant. To quantitatively evaluate these results, the RMSEs before
and after DSM registration were estimated using RCPs, summarized in Table 7. The
RMSEs for the DSM without GCPs were estimated to be a minimum of 16.322m and a
maximum of 46.924m, and the average RMSE was estimated as 34.866m. The height
error of DSM without GCPs was more sensitive to the initial value than orthophoto with-
out GCPs. Hence, the RMSEs were estimated to be much larger than the 2D error in the
X and Y directions. The RMSEs of the corrected DSM using the proposed method were
estimated to be a minimum of 0.151m and a maximum of 0.484m, and the average
RMSE was estimated to be 0.251m. Based on these results, the accuracy of the corrected
DSM improved compared with the DSM without registration.

5. Discussion

In this study, we proposed a methodology to build consistent time-series orthophotos and
DSMs produced from UAV imagery over farmland. The geometric and height dissimilar-
ity between reference and multi-temporal orthophotos and DSMs were minimized by the
proposed method without using GCP. In this section, a detailed analysis with respect to
the proposed method focusing both on the image registration and DSM registration was
performed. Moreover, experiments were conducted on an additional study site to verify
the robustness of the method.

In the registration results described in Sections 4.1–4.3, the misalignment became more
severe than the raw image while using only the MI algorithm due to the mechanism of
the area-based matching method. The template should be overlapped at similar locations

Figure 13. Box plots based on height of each DSM: (a) Before DSM registration and (b) After DSM registration.
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between the images to perform accurate registration. However, the template cannot over-
lap at similar locations between images when misalignment is severe, such as in the
experimental data. For these reasons, inaccurate registration was performed because tie-
points were extracted at different locations between the images when using only the MI
algorithm. Conversely, the proposed method could extract the tie-point from similar loca-
tions between images because it uses the MI algorithm after performing the coarse
registration.

The SURF algorithm performed accurate registration on experimental data except for
the 2019-09-23 and 2019-10-04 orthophotos, whereas the proposed method obtained the
accurate results in all orthophotos. These results are related to the number of extracted
tie-points used for performing the image registration. Figure 14 illustrates the trend in the
number of tie-points extracted from each method. The number of tie-points extracted
from both methods decreased as the difference in acquisition date between the reference
and input images increased. Nevertheless, the proposed method extracted approximately
two to three times more tie-points than the SURF algorithm in all experimental data.
Consequently, the RMSE of coarse registration in the proposed method was 0.382m that
is lower on average than that of the SURF algorithm, and it was particularly estimated to
be approximately 1m lower in 2019-09-23 and 2020-10-04 orthophotos as shown in
Table 8.

The proposed DSM registration method corrects the DSM height using EIFs extracted
from non-vegetated (height-invariant) areas without additional data. Various experiments

Table 7. RMSEs of DSM registration results (Unit: m).

Acquisition date DSM without GCPs Registered DSM

2019-06-21 30.905 0.151
2019-07-22 16.322 0.282
2019-09-06 22.078 0.484
2019-09-10 46.321 0.171
2019-09-23 46.924 0.241
2019-10-04 46.645 0.180
Average 34.866 0.251

Figure 14. Comparison of extracted number of tie-points by SURF algorithm and proposed method. Note that the
numbers are tie-points after removing the mismatched ones; the proposed method’s results are the tie-points
extracted during the coarse registration step.
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(in Section 4) demonstrated that the proposed method can correct the height of the DSM
similarly to the absolute ground height. Therefore, the proposed method has notable ver-
satility and convenience because it only requires accurate orthophotos and DSMs, which
are the reference data for correcting the height of DSMs without GCPs.

The corrected DSM using the proposed method can roughly reflect the crop height in
the experimental area. The experimental site consists of peppers, soybeans, sesame, peril-
las, and rice paddies. According to the table of crop characteristics provided by the Rural
Development Administration of South Korea, the growth heights of peppers, soybeans,
sesame, perillas, and rice paddies average 1.51, 0.75, 1.34, 1.49, and 0.92m, respectively in
Korean standards (Nongsaro 2021). Therefore, the corrected DSM using the proposed
method satisfies the height tolerance range (0.75m–1.51 m) of the experimental site
because the maximum RMSEs based on the checkpoints and RCPs are 0.214 and 0.484m,
respectively. However, the height of crops may contain an error since the accuracy of the
proposed method is derived from the non-vegetation areas in the experimental site.
Nevertheless, the proposed method can effectively correct the DSM without GCPs and be
used as a basic method for agricultural applications.

Through the analysis and discussion of various experiments, it has been demonstrated
that the performance and accuracy of the proposed method are noteworthy. However,
robustness is not guaranteed as these results have been verified using data obtained from
a single experimental site. Therefore, we evaluated the robustness by conducting the pro-
posed approach to an additional pair of datasets acquired in Texas A&M AgriLife
research centre farm in Corpus Christi, Texas, USA. This dataset was acquired using DJI
Phantom 4 Pro with a standard RGB sensor and has 1 inch CMOS 20 Mega Pixel sensor.
Reference data was generated using 11 GCPs, while target data was produced using only
UAV images. Mosaic images generated with reference and target orthophotos before and
after conducting the image registration are given in Figure 15a and b, respectively. In the
case of the mosaic image before conducting image registration (Figure 15a), the boundary
between each image was expressed inconsistently. On the other hand, the road and crop
boundaries in the mosaic images composed of reference and registered orthophotos were
aligned shown in Figure 15b. In addition, point clouds of the corrected DSM were con-
verted similarly to the reference DSM as one can see in Figure 15c. The quantitative
accuracy of the corrected data was derived as 0.031m and 0.219m in the horizontal and
vertical directions, respectively (Table 9).

6. Conclusions

In this study, we proposed a method that registers multi-temporal orthophotos and DSMs
without GCPs by referring to an accurately produced orthophoto and DSM with GCPs.

Table 8. Quantitative accuracy calculated by RCP of each method (Unit: m).

Acquisition date SURF algorithm SURF with searching space

2019-06-21 0.541 0.312
2019-07-09 0.083 0.071
2019-07-22 0.241 0.023
2019-08-14 0.061 0.055
2019-08-20 0.149 0.081
2019-09-06 0.314 0.227
2019-09-10 0.516 0.372
2019-09-23 1.906 0.485
2019-10-04 1.647 0.386
Average 0.606 0.223
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The orthophotos produced without GCPs were corrected by performing coarse to fine
registration using the SURF and MI algorithms sequentially. Subsequently, the EIFs were
extracted from non-vegetation areas by binarizing the ExG image calculated from each
orthophoto to register the DSMs. Outliers with weak height invariant properties were
removed using the normalized Z-score generated from the height difference between the
EIFs for each DSM. Then, the DSM was compensated using a linear regression model
based on EIFs. The performance and accuracy of the proposed method were evaluated
using multi-temporal orthophotos and DSMs acquired over farmland.

The accuracy of the corrected orthophotos and DSMs using the proposed method was
evaluated using the checkpoints obtained from GNSS surveying as assessment data. The
average RMSEs based on the checkpoints were 0.024, 0.037, and 0.151m in the X, Y, and

Figure 15. Mosaic images and point clouds experimented on additional dataset: (a) Mosaic image generated with
raw orthophotos, (b) Mosaic image generated with registered orthophotos, and (c) Point clouds of DSMs. The refer-
ence and target orthophotos are expressed as RGB and BGR in mosaic images, respectively. Point clouds of reference
DSM are expressed as red, and point clouds of raw and corrected DSMs are expressed as black and blue, respectively.

Table 9. Determined RMSEs of corrected orthophoto and DSM (Unit: m).

Acquisition date Horizontal Vertical

Raw data 4.166 5.410
Registered data 0.031 0.219
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Z directions, respectively. Furthermore, accurate time-series orthophotos and DSMs were
produced using the proposed method. The corrected multi-temporal orthophotos and
DSMs had an accuracy of 0.034m in the horizontal direction and 0.251m in the verti-
cal direction.

In summary, the proposed method can build high-quality time-series orthophotos and
DSMs with suitable geometric accuracy. Therefore, the proposed technique can increase
the efficiency of data generation for agricultural applications and has the advantage of
using established data. However, because the accuracy of the corrected DSM is an evalu-
ation result based on the height values of ground and road, it is uncertain whether it can
effectively reflect the actual crop height. In addition, since the non-vegetation areas in
farmland may be dynamically changed, ambiguous errors may thus occur in certain data.
Future research will evaluate the applicability and scope of the proposed technique by
performing a comparative analysis between the results by monitoring crops using the cor-
rected orthophotos and DSMs and data collected from field observations. Moreover, we
will focus on conducting precise DSM registration by identifying the elevation invariant
relationship between time-series DSMs.
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