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A B S T R A C T   

Turfgrass is an important urban crop in the United States. Determining the percent green cover (PGC) to assess 
turfgrass quality/health and the rate of establishment is a crucial parameter for evaluating different species and 
experimental lines within species. However, evaluating the PGC of individual plots within large breeding 
nurseries in a conventional way, either visually or through digital image analysis is a time-consuming and 
laborious process. In the present study, we used the unmanned aerial vehicle (UAV) with multispectral and RGB 
sensors to estimate PGC during turfgrass establishment. We evaluated thirty approaches with different levels of 
complexity based on vegetation indices, supervised and unsupervised machine learning classification methods, 
and image processing methods for high-throughput turfgrass PGC estimation. An HSV (Hue-Saturation-Value) 
color space-based green pixel identification (GPI) method was introduced for the first time for estimating UAV 
derived PGC (UAVPGC). The results indicate that the GPI achieved the highest coefficient of determination, 
0.86–0.96, with lowest mean absolute error when compared to ground percent green cover (GroundPGC). 
Overall, UAV-derived RGB image-based support vector machine methods were in agreement with GroundPGC 
(R2 

= 0.88–0.95). This suggests that UAV-derived RGB images are adequate in accurately determining percent 
green cover (green vegetation within an experimental plot); however, multispectral images might offer a solution 
to determine turfgrass coverage (green and non-green vegetation within an experimental plot) during turfgrass 
establishment to account for non-green vegetation which is not captured by RGB (visible light spectrum) based 
estimation of PGC.   

1. Introduction 

Turfgrass serves as an important vegetative ground cover worldwide 
(Emmons and Rossi, 2015) offering many environmental, economic and 
societal benefits (Brosnan et al., 2020). Percent green cover (PGC), 
described as a percent of green vegetation per unit area, is a crucial 
indicator used to evaluate the overall plant health and establishment 
rate over time. Species and cultivars with faster establishment from 
plugs or sprigs and higher PGC are favored by turfgrass producers and 
consumers alike. Conventional visual assessment of turfgrass plots to 
estimate the amount of green cover, on a percent or 1–9 scale has served 
as a standard and is routinely used by the turfgrass researchers (Morris 
and Shearman, 1998). However, collecting visual ratings is a time- 
consuming and labor-intensive process (Trenholm et al., 1999), 

especially for large breeding nurseries, which limits the frequency of 
data collection. Satuared soil condition after major rainfall event may 
delay access to the field nurseries and affect timely visual data collection 
by plant breeders and researchers. Visual assessments are also subjective 
in nature (Horst et al., 1984) and are inevitably prone to rater’s fatigue 
and rater’s bias (personal preference) even if the rater is well-trained. 
Furthermore, the inconsistency of visual field assessments between 
different raters as well as optical illusion (Bach and Poloschek, 2006) or 
the influence of variable weather conditions (cloudiness, shadows, turf 
wetness) and mowing patterns (direction and height) across different 
data collection days (Krans and Morris, 2007) can make conducting 
genetic comparisons difficult. 

The quality and frequency of phenotypic data collection at the field 
scale is currently the bottleneck limiting the efficiency and accuracy of 
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classical phenotype-based plant breeding. Ground-level spectral or 
proximal sensing methods have been used to address some of the limi-
tations associated with visual field assessments. Proximal digital imag-
ery data has been widely used for pest detection, vegetation 
management, and green cover estimation (Adamsen et al., 1999). Can-
opy structure estimation (Tucker et al., 1975), and vegetation indices 
(VIs) such as the leaf area index (LAI) and green area index (GAI) have 
been shown to estimate the green cover of shortgrass prairie and provide 
quantitative vegetation information as compared to qualitative visual 
ratings (Przeszlowska et al., 2006). Turfgrass researchers routinely use 
ground-level digital image analysis using the light-box for quantitative 
estimation of PGC (Richardson et al., 2001). More recently, researchers 
have been using handheld devices with multispectral sensors to record 
NDVI (normalized difference vegetation index) on individual plot basis 
(Bremer et al., 2011). Although collecting such ground-level spectral or 
proximal data saves resources and offers quantitative assessment, col-
lecting such data frequently on large breeding nurseries is still a time 
and labor-intensive procedure. 

Remote sensing has emerged as an efficient tool to collect quantita-
tive data in a high-throughput manner. It has been widely used in the 
areas of environment, agriculture and urban planning, (Bégué et al., 
2018; de Donato et al., 2016; Huang et al., 2018; Yang et al., 2014). 
More recently, researchers have shown an increased interest in using 
unmanned aerial vehicle (UAV) based remote sensing because of its ease 
of use, ability to acquire fine spatial and high temporal resolution data, 
as well as lower cost compared to conventional remote sensing platforms 
(Wang et al., 2020c). Unlike satellite images, UAV data collected on 
overcast days is generally usable when flight is operated below the cloud 
level. UAV remote sensing is becoming a popular solution for precision 
disease delineation, yield estimation, and field management (Ashapure 
et al., 2020; Bhandari et al., 2020; Chang et al., 2021, 2020, 2017; Duan 
et al., 2019; Herrmann et al., 2020; Maimaitijiang et al., 2020; Oh et al., 
2020; Romero et al., 2018; Su et al., 2018; Wang et al., 2020b, 2020a). 
UAV remote sensing has been used to monitor the nitrogen status and 
detect the drought stress in turfgrass systems (Caturegli et al., 2016; 
Hong et al., 2019b, 2019a). Zhang et al. (2019) have shown the potential 
utility of UAV-derived vegetation indices (VIs) such as zonal mean 
normalized difference vegetation index (NDVI) to predict PGC and 
turfgrass quality. Zonal mean NDVI-based predictions of PGC during 
turfgrass establishment can potentially be impacted by factors like 
species, biomass, plant stresses, genetic color, shoot density, and overall 
plant health. (Campos et al., 2019; Caturegli et al., 2020; Gogoi et al., 
2018; Samseemoung et al., 2012). A healthier or denser turfgrass stand 
could lead to a higher zonal NDVI value and, consequently, higher PGC 
values as compared to a larger-sized turfgrass stand but with lower color 
or density ratings. Furthermore, the estimation of NDVI requires the use 
of multispectral sensors and sophisticated radiometric calibration of 
these sensors. To generate high-quality indices, the spectral information 
of each band needs to be converted to reflectance value using either a 
ground radiometric calibration target or an additional downwelling 
light sensor, which can lead to an increase in labor and cost 

Image processing methods based on visible spectrum (RGB), such as 
Sigma Scan (Karcher and Richardson, 2005), Image J (Abràmoff et al., 
2004), Turf analyzer (Karcher and Richardson, 2015) are routinely used 
to determine PGC in the field. Another algorithm called Canopeo was 
proposed by Patrignani (2015) to identify green canopy cover based on 
RGB image with three empirical parameters. Compared to multispectral 
sensors, the RGB sensors usually offer a cost-effective way to measure 
canopy cover. Besides, converting RGB images into Hue-Saturation- 
Value (HSV) color space (Smith, 1978) can help identify a specific 
color within the visible spectrum. Vegetation can be identified based on 
HSV color space in the image (Huang et al., 2016; Yang et al., 2015), 
which has not previously been used to study remote sensing derived 
turfgrass data. 

Classification is a method that can categorize the pixels within an 
image based on each pixel’s spectral features (Kranjcic et al., 2019)and 

has been demonstrated to analyze remote sensing data (Fauvel et al., 
2008; Gong and Howarth, 1992; Lu and Weng, 2007; Mountrakis et al., 
2011; Pal and Mather, 2005). The pixels or objects in the image are 
classified according to the land cover themes. Support vector machine 
(SVM), maximum likelihood classification (MLC), minimum distance 
classification (MDC), k-means, and ISODATA classification have been 
shown to effectively distinguished spectral information of vegetation 
from the soil (Yang et al., 2015). Supervised classification methods such 
as SVM, MLC, and MDC require training data to train the models, and 
can usually achieve better accuracy than unsupervised classification 
methods such as k-means and ISODATA (Wang et al., 2020b; Yang et al., 
2015). On the other hand, unsupervised classifications offer more 
automated procedures than supervised classification. We believe that 
both supervised and unsupervised machine learning classifications 
based on visible and infrared spectral bands could potentially be intro-
duced to measure percent green cover within a plot during turfgrass 
establishment. 

To overcome the shortcomings of conventional methods used for 
estimating turfgrass green cover and to benefit from high-resolution 
RGB and multispectral images, the specific objectives of this study are: 
(1) introduce and compare different approaches to estimate percent 
green cover during turfgrass establishment using UAV-derived data; (2) 
demonstrate the effectiveness of UAV-derived percent green cover 
estimation by comparing it to ground-level percent green cover data. 

2. Materials and methods 

2.1. Study site 

This study was conducted at Texas A&M AgriLife Research and 
Extension Center in Dallas, TX (32◦59′10.8′′N 96◦45′49.4′′W) (Fig. 1). 
The soil order is Vertisol and type is Austin silty clay composed of 45% 
clay, 7% sand, and 48% silt (http://websoilsurvey.nrcs.usda.gov/). 
Single-spaced-plant nurseries (SSPNs) for zoysiagrass (Zoysia spp.) and 
seashore paspalum (Paspalum vaginatum Sw.) were planted on July 21, 
2020, as part of the USDA-NIFA funded SCRI project # 2019–51181- 
30472. A total of 225 zoysiagrass and 94 seashore paspalum entries were 
planted separately using a randomized complete block design with two 
replications and a single plug (3′′ x 3′′) per replication. Immediately after 
planting, the study site was rolled with a 2268 kg (5000 lb) roller and 
supplied with 0.022 kg m− 2 (4.5 lb per 1000 ft− 2) of Andersons [5–0-10 
N-P-K fertilizer and Oxadiazon (Ronstar G)] for pre-emergent weed 

Fig. 1. The study was conducted at a portion of 0.05 km2 field in Dallas, TX: 94 
seashore paspalum and 225 zoysia grass plots. 
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control. Additional fertilizer (Harrell’s 42–0-0 N-P-K) was applied in 
August and September at a rate of 0.005 kg m− 2 (1 lb N per 1000 ft− 2) 
per month. Weekly mowing was initiated one-month post-planting at 
3.81 cm height by using a reel mower, and manual weeding was per-
formed on an as-need basis to maintain plots weed free. Adequate irri-
gation to supplement rainfall was provided to prevent stress and to 
promote growth and establishment of plots. 

2.2. Data collection 

A rotary-wing UAV DJI Matrice 200 V2 (DJI Technology Inc., 
Shenzhen, China) was used to acquire imagery data on September 24 
and October 16, 2020 (Fig. 2a). A multispectral sensor SlantRange 4P+
(SlantRange Inc., San Diego, CA, USA) was mounted on the UAV to 
collect multispectral images (Fig. 2b). The sensor collected images in six 
bands which contains three wide visual bands: blue (470 ± 55 nm), 
green (520 ± 55 nm), red (620 ± 55 nm), and three narrow bands: red 
(650 ± 20 nm), red edge (715 ± 15 nm), NIR (850 ± 35 nm). The images 
were collected at 70-m above ground level (AGL), which resulted in 
orthomosaic images with a spatial resolution of 1.55 cm Ground Sam-
pling Distance (GSD). A 75% forward and side overlap was used for all 
the UAV data acquisition. The multispectral sensor is equipped with an 
ambient illumination sensor (AIS) which collects the environmental 
light condition and converts the at-sensor radiance into absolute surface 
reflectance value (Ashapure et al., 2019). Eight ground control points 
(GCPs) were placed at four corners and four edge midpoints of the fields 
for geo-referencing. Emlid Reach RS + RTK GNSS receivers (a rover and 
a base) (Emlid, Hong Kong, China) were used to get precision location 
coordinates of GCPs. 

A commercial RGB camera Canon PowerShot G16 (Canon, Ota City, 
Tokyo, Japan) was mounted on the top cover of a light-box (Fig. 3) 
facing the ground and used for ground-level digital image collection 
(Karcher and Richardson, 2005). The camera was set in auto mode with 
a graphic ratio of 1:1. The dimension of the box is 0.6 × 0.5 × 0.5 m (L ×
W × H). There are four LED cold light illuminators distributed at the 
corners inside the box facing the ground for consistent lighting condi-
tions. The ground images of 188 seashore paspalum plots and 440 
zoysiagrass plots were collected one by one on September 25 and 
October 21 (Table 1). Each captured image covered a 0.5 × 0.5 m2 

ground area. 

2.3. Data pre-processing 

To make the data comparable, the plots with grass coverage outside 
the dimension of the light-box were excluded such that a total of 112 
seashore paspalum plots (out of 188) and 426 zoysiagrass plots (out of 
450) were used for analyzing the first round of collected data. For the 
second round of data collection, 48 seashore paspalum and 360 

zoysiagrass plots remained inside the dimension of the lightbox and 
were used for data analysis. The ground-level images were processed 
using Sigma Scan Pro software (Systat Software Inc, San Jose, CA, USA) 
to obtain ground PGC referred to as groundPGC in this research. We refer 
to the UAV-derived turfgrass PGC as UAVPGC for differentiation. 

The collected UAV data includes raw imagery, Global Navigation 
Satellite System (GNSS), and inertial measurement unit (IMU) data. The 
raw imagery data were pre-processed and calibrated using SlantView 
(SlantRage, San Diego, CA, USA) software to perform radiometric cali-
bration, and then the radiometrically calibrated images were processed 
using Pix4D mapper (Pix4D S.A, Lausanne, Switzerland) to generate 
orthomosaic images. 

2.4. UAV-derived turfgrass green cover methods evaluation and 
comparison 

Considering the accuracy, ease of use, and potential cost, a total of 
thirty turfgrass green cover estimation methods based on UAV data were 
selected to be evaluated and compared (Table 2). The methods include 
the combinations of different data processing approaches associated 

Fig. 2. The images were captured using (a) DJI Matrice 200 V2 UAV platform with a (b) SlantRange 4P + multispectral sensor.  

Fig. 3. The light-box was used to mount a camera for the collection of ground 
imagery data. 

Table 1 
The timeline for data collection of UAV imagery and ground imagery.   

1st round data collection 2nd round data collection 

UAV imagery data September 24, 2020 October 16, 2020 
Ground imagery data September 25, 2020 October 21, 2020  

T. Wang et al.                                                                                                                                                                                                                                   
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with the corresponding required imagery data type. The data type in-
cludes 6-band multispectral imagery data (blue, green, red-wide, red- 
narrow, red edge, NIR), 3-band colored-infrared (CIR) composite mul-
tispectral imagery data (green, red, NIR), RGB imagery data (red, green, 
and blue), and VI imagery data. The thirty methods can be summarized 
into different workflows based on the working principle (Fig. 4) which 
includes unsupervised and supervised classification, VIs based unsu-
pervised classification, zonal mean VIs, VIs with threshold, and image 
processing. 

We have summarized these thirty methods into three levels of 
complexities based on the time or steps required to determine turfgrass 
PGC as well as the need for user’s prior knowledge in the area of ma-
chine learning. Unsupervised methods such as 2-class k-means or 2-class 
ISODATA, require fewer number steps or prior knowledge to determine 
turfgrass plot green cover and therefore, were placed in the low 
complexity group, whereas unsupervised methods such as green pixel, 
Canopeo, combined 10-class unsupervised classification, and VIs (NDVI, 
NDRE, and VARI) with threshold, requires parameter estimation and 
tuning by a knowledgeable user and were therefore, placed in the 
moderate level of complexity. Supervised classification methods (SVM, 
MLC, and MDC) generally require time and an experienced user to train 
the data set and therefore was placed in the high complexity group. For 
calculating zonal mean VIs (NDVI and NDRE), the user needs the 
ground-truth data for conducting the regression analysis and therefore, 
was also grouped as high complexity level methods. 

2.4.1. Machine learning based on multispectral images 
With machine learning classification methods, the high-throughput 

PGC estimation methods can be achieved. The classification based 
PGC estimation procedure can be summarized into two main steps: (1) 
The pixels of vegetation were differentiated from the pixels of soil or 
other non-vegetation objects, and (2) the classification map is used to 

derive the PGC. Each pixel in the image was categorized into “grass” or 
“non-grass” based on spectral information and then formed a binary 
image. In the present study, “grass” pixel refers to plant tissue with only 
green leaves. Counting the number of “grass” pixels would lead us to 
determine the PGC of turfgrass within a plot (Fig. 5). Supervised clas-
sification (SVM, MLC, MDC) and unsupervised classification (k-means, 
ISODATA) algorithms were evaluated for their performance of PGC 
estimation as different machine learning approaches. Different band 
composites including 6-band (blue, green, red, red-narrow, red edge, 
NIR), RGB-band (blue, green, red), and CIR-band (green, red, NIR) were 
also compared to provide researchers information on the flexibility and 
practicality of using different types of sensors for estimating turfgrass 
plot green cover. On each date, the supervised classifications were 
applied to each band-composite to generate a 2-class classification using 
the training data. The unsupervised classifications were applied to three 
different band-composites to generate 2-class and 10-class classifica-
tions, respectively. The 10-class unsupervised classification requires an 
extra step of merging ten classes into 2-classes to generate a binary green 
cover image. 

The polygons of size 0.5 × 0.5 m2, the same size as the light-box, 
were drawn for each plot in QGIS software (Open source). The num-
ber of pixels of each class (grass or non-grass) in each plot were counted 
using QGIS zonal statistics tool and eventually were used for calculating 
PGC using the following formula: 

PGC =
Numberofgrasspixels
Numberoftotalpixels

(1) 

Where PGC is percent green cover 

2.4.2. Mean vegetation indices 
The mean NDVI and NDRE values were generated to compare with 

the classification-derived PGC. The NDVI and NDRE images were 
calculated in ENVI (Harris geospatial solution, Boulder, CO, USA) by 
using the Formula (2) and (3) and the mean NDVI and NDRE of each 0.5 
× 0.5 m2 plots were calculated using QGIS zonal statistics tool. 

NDVI =
(NIR − red)
(NIR + red)

(2)  

NDRE =
(NIR − rededge)
(NIR + rededge)

(3) 

Where NIR is the reflectance of near-infrared band at 850 nm; Red is 
the reflectance of the narrow red band at 650 nm; Red edge is the 
reflectance of the red edge band at 715 nm. 

2.4.3. Vegetation indices with thresholds 
Mean VIs could indicate the overall growth status in the plot, but it 

cannot indicate the percentile value of green cover directly. Instead, an 
empirical threshold can be determined to covert the VI image into a 
binary image. In our case, the threshold value of 0.3 and 0.2 were 
empirically determined for NDVI and NDRE, respectively. In each 0.5 ×
0.5 m2 plot, the pixels with a value larger than the thresholds were 
regarded as established regions and used to calculate the percent plot 
cover. The Visible Atmospherically Resistant Index (VARI) (Formula 4), 
as a popular vegetation index using a visible range of the spectrum, was 
also evaluated with a threshold of 0. 

VARI =
(green − red)

(green + red − blue)
(4) 

Where blue is the reflectance at 470 nm; green is the reflectance at 
520 nm; Red is the reflectance at 620 nm. 

2.4.4. Machine learning based on vegetation indices 
The empirical threshold values are usually determined based on the 

characters of sensors, light condition, soil types, and species, and so 
forth, which are not likely to be the same from one to another, or one 

Table 2 
Different methods and spectral bands were used to analyze UAV-derived images 
for determining the percent green cover of turfgrass.  

Categories Methods† 6-band 
composites 

CIR 
composites 

RGB 
composites 

2-class 
unsupervised 
classification 

k-means (2- 
class) 

X X X 

ISODATA 
(2-class) 

X X X 

VIs with 
unsupervised 
classification 

NDVI based 
k-means  

X  

NDRE based 
k-means  

X  

Image processing Green Pixel   X 
Canopeo   X 

10-class combined 
unsupervised 
classification 

k-means 
(10-class 
combined) 

X X X 

ISODATA 
(10-class 
combined) 

X X X 

VIs with threshold NDVI with 
threshold  

X  

NDRE with 
threshold  

X  

VARI with 
threshold   

X 

Supervised 
classification 

SVM X X X 
MLC X X X 
MDC X X X 

Mean VIs Zonal mean 
NDVI  

X  

Zonal mean 
NDRE  

X   

† Thirty different methods used in the current study. Blue color = Low 
complexity methods; Green color = Moderate complexity methods; Yellow color 
= High complexity methods. 
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location to another. In other words, expertise and labor are also required 
for the empirical thresholding VIs approaches. Unlike thresholding VI 
approaches, applying 2-class k-means classification to VI images with 
adequate iteration can generate binary maps automatically without any 
empirical parameters. NDVI and NDRE images were used in this study to 
demonstrate the 2-class k-means classification to calculate PGC. 

2.4.5. RGB image processing approaches 
Canopeo, an algorithm that can measure the green canopy cover, was 

also tested and evaluated in this study. The green cover was identified if 

the following criteria were met: 

Red
Green

< P1and
Red

Green
< P2and2 × Green − red − blue > P3 (5) 

Where blue is the reflectance of the blue band at 470 nm; green is the 
reflectance of the green band at 520 nm ; Red is the reflectance of the 
narrow red band at 620 nm. In this study, P1 = 1.2, P2 = 1.2, and P3 = 2 

In addition to the Canopeo algorithm, we also introduced a new 
turfgrass PGC estimation approach for turfgrass that is based on HSV 
color space called Green Pixel Identification (GPI). The RGB image was 

Fig. 4. Nine different workflows of studied methods in the order from low to high complexity. The green box represents procedures required empirical parameters 
tuning or determining. The yellow box represents procedures of algorithm training or ground-truth data regression. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. (a) Nine seashore paspalum plots shown in RGB composites were classified into (b) binary classification. The pixels of the grass class are shown in white while 
the pixels of the non-grass class are shown in black. The PGC of each plot was calculated within each corresponding ROI. The ROI is in size of 0.5 × 0.5 m2 which is 
the same as the ground and UAV data processing area. 
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first converted to HSV color space so that all pixels in the image could be 
represented using hue, saturation, and value. The hue value represents 
all of the visible colors in 360◦. The saturation represents the intensity 
and brilliance of the color on a scale of 0–100, while the value represents 
the brightness of the color on a scale of 0–100. The median hue value of 
green color is approx. 120. A minimum of saturation should be set to 
avoid wrongly identifying the bright colored soil. A minimum value 
could also be set to avoid misclassifying dark pixels. The hue, saturation, 
and value are adjustable to fit different turfgrass species and sensors. 
The algorithm was developed using Python (Python Software Founda-
tion, Wilmington, DE, USA) and is available to researcher by contacting 
the corresponding author. In this study, green pixels were identified 
using a tolerance of 20 hue and a minimum saturation of 20 as criteria 
(Fig. 6): 

100 < Hue < 140and20 < Saturation < 100 (6) 

Where Hue is on a scale of 0–360; Saturation is on a scale of 0–100 

2.5. Error assessment 

A robust estimation method not only needs a high coefficient of 
determination but also requires low errors in predictions. Besides coef-
ficient of determination, we used mean absolute error (MAE) as another 
important criterion to evaluate the methods. MAE is the average of the 
difference between predicted and actual values. The smaller the MAE, 
the more accurate the prediction method. The MAE values were calcu-
lated using SPSS (IBM, New York, NY, USA). 

MAE =

∑n
i=1|yi − xi|

n
(7) 

Where MAE is mean absolute error; yi is the predicted value; xi is the 
true value; n is the total number of data points. 

3. Results and discussion 

3.1. Overall comparison between methods 

The coefficient of determination between GroundPGC and UAVPGC 
using thirty approaches was determined for both seashore paspalum 

(Fig. 7) and zoysiagrass (Fig. 8). Results showed that 19 out of 30 
methods tested for seashore paspalum have the average coefficient of 
determination (R2) larger than 0.80 (Fig. 7, Table 3). The GPI with the 
highest correlation of 0.95 is recognized as a moderate-complexity 
method, followed by another moderate-complexity method, NDVI_-
threshold (0.93). The top 10 methods group either in moderate or high 
complexity level. The low-complexity method that has the highest cor-
relation with ground data is NDVI_k-means (0.90), ranking #11 among 
the comparison. 

Likewise for zoysiagrass, 13 out of 30 methods tested show an 
average coefficient of determination (R2) larger than 0.80 (Fig. 8, 
Table 3). The RGB_SVM, categorized as a high-complexity method, 
achieved the highest correlation followed by GPI categorized as a 
moderate-complexity method. The low-complexity method with the 
highest correlation with ground data is NDVI_k-means (0.85), ranking 
#8 among the comparison. 

In this study, a laptop with Intel i7 9750H CPU associated with 32 GB 
RAM was used for the data analysis. As low complexity methods, 
NDVI_k-means, NDRE_k-means, and all other 2-class unsupervised 
classification generated the classification result in 3–5 s. Likewise, Green 
pixel, Canopeo, NDVI_threshold, NDRE_threshold, and VARI_threshold 
with known parameters achieved this same processing speed. However, 
determining a proper set of parameters for these methods is basically a 
process of ‘trial and error’ and generally takes 1–5 min depending on the 
amount of parameter tuning required. For example, VIs with threshold 
requires only one parameter tuning (ranging between 0.2 and 0.4) and 
may take shorter time than Green pixel and Canopeo methods. In our 
study, Green pixel required two parameters which are also located 
within certain range; whereas, Canopeo required three ratio parameters. 
For 10-class classification, combining classes into 2-class classification 
may take approximately 5 min for each run. For supervised classifica-
tion, selecting and training data with 10 ROIs for two classes generally 
took 5–10 min. Besides, selecting proper ROIs requires certain level of 
expertise. The description provides the rationale behind categorizing 
these methods into low, moderate, and high complexity. 

Although the absolute R2 value of the methods showed a difference, 
the relative performance of methods showed an agreement between the 
two species, especially for the top-ranked methods. The methods with 
the highest seven R2 value of seashore paspalum are the same as 

Fig. 6. Green color with the hue of 100–140 and saturation of 20–10 was identified from the image mosaics. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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zoysiagrass, referenced as the top 7 methods in the later section. Among 
the top 7 methods, GPI, NDVI_threshold, and Canopeo are moderate- 
complexity methods, while RGB_SVM, 6B_SVM, RGB_MLC, and 
CIR_SVM are high-complexity methods. NDVI_k-means has the highest 
R2 value among all low-complexity methods. 

Compared to seashore paspalum, the R2 value of zoysiagrass is 
relatively lower. By Oct.16, 2020, the seashore paspalum had an average 
groundPGC of 23.08 %, while zoysiagrass only had groundPGC of 11.13 %. 
Similar results were found by Zhang et al. (2019) where the zoysiagrass 
has a relatively lower PGC than bermudagrass (Cynodon spp.). The 
slower growth rate and consequently, smaller plot coverage of zoysia-
grass at the time of data collection may have potentially led to a lower 
correlation. First, misclassification was commonly observed at the 
boundary of the object, known as the boundary effect (Wang et al., 
2020b). A smaller patch of grass may lead to a higher percent of 
boundary pixels. Additionally, non-green vegetation due to injury to 
pesticide application, or environmental stress or new stolon growth on 
the edges which may appear as non-green pixels in RGB imagery but still 
exhibit strong reflectance in the NIR spectrum because of the presence of 
chloropyll in the plant tissue (Fig. 9). This helps explain why some RGB- 
based UAVPGC approaches, such as GPI and RGB_SVM, demonstrated 

better relationship with RGB-based GroundPGC as compared to the 
multispectral imagery. These results also suggest that RGB based 
methods are suitable for estimating percent green cover but multi- 
spectral imagery may be more suitable in estimating turfgrass coverge 
which would include green and non-green “grass” pixels (Figs. 9 & 10). 

3.2. Error assessment 

Mean absolute error (MAE) shows an overall agreement to the co-
efficient of determination, but it can also indicate the shift of prediction 
results. For example, NDVI_k-means has an R2 ranging from 0.92 to 0.89 
for paspalum, but it overestimated 12.7 to 13.9% absolute PGC in this 
case. The methods with the MAE lower than 5 % for seashore paspalum 
are GPI (2.4%), RGB_SVM (3.0%), NDVI_threshold (4.1%), 6B_SVM 
(4.6%), Canopeo (4.7%), 6B_MDC (4.9%) , CIR_SVM (4.9%), and 
CIR_MDC (4.9%) (Fig. 11, Table 4). Mean NDVI and Mean NDRE cannot 
be evaluated because they were not in percentile format. 

The methods with the MAE lower than 5 % for zoysiagrass are GPI 
(2.1%), RGB_SVM (2.4%), 6B_SVM (2.7%), CIR_SVM (2.8%), CIR_MDC 
(2.8%), 6B_MDC (2.9%), 6B_10-class combined k-means (3.0%), Can-
opeo (3.2%), RGB_MLC (3.3%), 6B_10-class combined ISODATA (3.3%), 

Fig. 7. The coefficient of determination comparison of seashore paspalum between UAVPGC and GroundPGC using different methods. UAV data were collected on 
September 24 and October 16, and ground data were collected on September 25 and October 21 in 2020. Letter A, B, and C above bars indicate different statistical 
groups (α = 0.05, Duncan test). 

Fig. 8. The coefficient of determination comparison of Zoysiagrass between UAVPGC and GroundPGC using different methods. UAV data were collected on September 
24 and October 16, and ground data were collected on September 25 and October 21 in 2020. Letter A, B, and C above bars indicate different statistical groups (α =
0.05, Duncan test). 
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Table 3 
The coefficient of determination between tested methods and ground truth data of 1st and 2nd round data collection.    

Seashore paspalum Zoysiagrass   

1st 
round 

2nd 
round 

Average St. 
Dev. 

S.E. 1st 
round 

2nd 
round 

Average St. 
Dev. 

S.E. 

Low complexity NDVI_k-means  0.9158  0.8874  0.9016  0.0201  0.0142  0.9063  0.7868  0.8465  0.0845  0.0598 
CIR_ISODATA (2-class)  0.8593  0.8705  0.8649  0.0079  0.0056  0.2788  0.7242  0.5015  0.3150  0.2227 
CIR_k-means (2-class)  0.8519  0.7992  0.8256  0.0373  0.0263  0.2927  0.4007  0.3467  0.0764  0.0540 
6B_ISODATA (2-class)  0.8263  0.7157  0.7710  0.0782  0.0553  0.1901  0.2098  0.1999  0.0139  0.0098 
6B_k-means (2-class)  0.8208  0.7157  0.7683  0.0743  0.0526  0.2061  0.2098  0.2079  0.0026  0.0018 
NDRE_k-means  0.6241  0.8742  0.7492  0.1769  0.1251  0.4045  0.7379  0.5712  0.2357  0.1667 
RGB_k-means (2-class)  0.3204  0.0117  0.1660  0.2183  0.1543  0.0042  0.0458  0.0250  0.0294  0.0208 
RGB_ISODATA (2-class)  0.3091  0.0014  0.1553  0.2176  0.1538  0.0034  0.0166  0.0100  0.0094  0.0066 

Moderate 
complexity 

Green pixel  0.9565  0.9351  0.9458  0.0151  0.0107  0.9332  0.8575  0.8953  0.0535  0.0378 
NDVI_threshold  0.9545  0.9139  0.9342  0.0287  0.0203  0.9428  0.8317  0.8873  0.0786  0.0555 
Canopeo  0.9526  0.8930  0.9228  0.0421  0.0298  0.9101  0.8046  0.8574  0.0746  0.0528 
6B_k-means (10-class combined)  0.9158  0.8836  0.8997  0.0228  0.0161  0.8798  0.8028  0.8413  0.0545  0.0385 
NDRE_threshold  0.8987  0.8874  0.8930  0.0080  0.0057  0.8630  0.7815  0.8222  0.0577  0.0408 
CIR_ISODATA (10-class 
combined)  

0.9044  0.8780  0.8912  0.0187  0.0132  0.8354  0.7850  0.8102  0.0356  0.0252 

CIR_k-means (10-class 
combined)  

0.9025  0.8538  0.8781  0.0345  0.0244  0.8630  0.6972  0.7801  0.1172  0.0829 

6B_ISODATA (10-class 
combined)  

0.9332  0.6480  0.7906  0.2016  0.1426  0.9101  0.3329  0.6215  0.4081  0.2886 

VARI_threshold  0.6352  0.6989  0.6671  0.0450  0.0318  0.4225  0.5700  0.4963  0.1043  0.0738 
RGB_k-means (10-class 
combined)  

0.5285  0.0117  0.2701  0.3655  0.2584  0.0079  0.0467  0.0273  0.0274  0.0194 

RGB_ISODATA (10-class 
combined)  

0.5242  0.0117  0.2679  0.3624  0.2563  0.0132  0.0467  0.0299  0.0236  0.0167 

High complexity RGB_SVM  0.9506  0.9178  0.9342  0.0232  0.0164  0.9158  0.8817  0.8988  0.0241  0.0171 
6B_SVM  0.9467  0.9006  0.9237  0.0326  0.0231  0.9235  0.8263  0.8749  0.0688  0.0486 
RGB_MLC  0.9448  0.9025  0.9236  0.0299  0.0211  0.8705  0.8668  0.8686  0.0026  0.0019 
CIR_SVM  0.9351  0.8949  0.9150  0.0284  0.0201  0.9120  0.8226  0.8673  0.0632  0.0447 
6B_MDC  0.9293  0.8836  0.9064  0.0323  0.0228  0.8930  0.7957  0.8443  0.0688  0.0487 
CIR_MDC  0.9332  0.8780  0.9056  0.0390  0.0276  0.9006  0.7850  0.8428  0.0817  0.0578 
Zonal mean NDVI  0.9158  0.8949  0.9054  0.0148  0.0105  0.7957  0.7885  0.7921  0.0050  0.0036 
6B_MLC  0.8949  0.8742  0.8846  0.0146  0.0103  0.8575  0.7310  0.7943  0.0894  0.0632 
CIR_MLC  0.8874  0.8705  0.8789  0.0119  0.0084  0.8575  0.7242  0.7908  0.0942  0.0666 
Zonal mean NDRE  0.7500  0.8100  0.7800  0.0425  0.0300  0.5761  0.6257  0.6009  0.0351  0.0248 
RGB_MDC  0.9293  0.0067  0.4680  0.6524  0.4613  0.1102  0.0686  0.0894  0.0294  0.0208  

Fig. 9. Stolon around the edges of the plots are visible in RGB composites image but hard to be distinguished in NIR band. The RGB image-based GPI approach shows 
superior performance in differentiating green grass from dead/dormant grass than the NIR-based methods. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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CIR_10-class combined ISODATA (3.5%), NDRE_threshold (3.5%), 
NDVI_threshold (3.6%), CIR_10-class combined k-means (4.7%), and 
NDVI_k-means (4.8%) (Fig. 12, Table 4). 

From the MAE standpoint, the GPI and RGB_SVM methods exhibited 
the lowest error. The top 7 UAVPGC methods selected based on their high 
correlation with the groundPGC also ranked in the top 7 methods selected 
using MAE. 

3.3. Zonal mean vegetation index 

Zonal mean NDVI achieved 0.91 R2 for seashore paspalum and 0.80 
for zoysiagrass, while zonal NDRE only achieved 0.78 and 0.60 for 
seashore paspalum and zoysiagrass, which indicated that zonal mean VIs 
are useful in estimating turfgrass green cover. In Zhang et al.’s study 
(2019), the mean NDVI approach achieved a similar result for zoysia-
grass (R2 = 0.73). However, to obtain the absolute PGC of plots, the 

light-box imagery derived ground truth green cover data must be 
collected each time to establish the mapping rule. Thus, zonal mean VIs 
are categorized as high-complexity methods. Besides, the detailed dis-
tribution information of the turfgrass plots cannot be revealed by mean 
VIs approaches. 

3.4. Classifications based on imagery data 

Vegetation indices usually use a limited number of spectral bands. 
For instance, NDVI is derived using only red and NIR bands, while NDRE 
only uses spectral information of red edge and NIR bands. However, the 
six-band composites-based machine learning classifications methods use 
all available spectral bands’ information, which theoretically should 
provide more accurate results. 

In this study, eight out of nine tested supervised classification 
exhibited a good correlation between UAVPGC and groundPGC (R2 =

0.72–0.95). The result shows that classifications based on three-band 
CIR composites are as robust as those based on six-band composites, 
indicating that the information obtained from CIR composites is suffi-
cient to distinguish turfgrass green cover from the soil. On the contrary, 
RGB composites did not provide adequate information for the minimum 
distance supervised classification. For example, RGB composites-based 
MDC could not accurately differentiate between dark color soil and 
turfgrass with dark greenness and classified them into turfgrass class. 
The RGB_MDC also mistakenly classified light color soil and turfgrass 
with light greenness into non-turfgrass class. 

The unsupervised classification did not perform as good as super-
vised classification, especially for the approaches based on RGB com-
posites (R2 = 0.00–0.53). Apparently, the clustering algorithm does not 
distinguish soil and grass accurately using the spectral information from 
visible bands only. The combined 10-class unsupervised classification 
with R2 value as high as 0.93 had superior performance than 2-class 
unsupervised classification. However, the performance may not be 
consistent due to the nature of the clustering principle. The rules of k- 
means/ISODATA classification were generated based on the separability 
of all the data points within the region of interest (ROI), which may vary 
from time to time. For example, the 6B_10-class combined ISODATA 
achieved R2 of 0.93 for the first round of seashore paspalum data but has 
the R2 reduced to 0.65 for the second round of seashore paspalum data. 
On the contrary, supervised classification, especially SVM, provided an 
accurate and consistent performance. 

In general, the supervised classification has better performance than 
the unsupervised classification on estimating turfgrass green cover, but 
the supervised classification requires training data preparation and al-
gorithm training, which are not required in unsupervised classification 

Fig. 10. New stolons (above-ground stems) with young leaves (marked with 
blue arrows) were classified as “non-grass” (non-green) pixels using RGB-based 
approaches while multispectual-based methods classififed them as “grass” 
pixels. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 11. Mean absolute error comparison of seashore paspalum using UAVPGC versus GroundPGC. UAV data were collected on September 24 and October 16, and 
ground data were collected on September 25 and October 21 in 2020. Letter a,b, and c above bars indicate different statistical groups (α = 0.05, Duncan test). 
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approaches. The combined 10-class unsupervised classifications per-
formed better than 2-class unsupervised classifications. However, the 
end-user will need to determine how to combine the 10-classes into 
binary classification while using the 10-classification. 

3.5. Vegetation indices with thresholds 

NDVI with a threshold of 0.3 achieved R2 of 0.91–0.95 for seashore 
paspalum and 0.83–0.94 for zoysiagrass, performing the best among all 
VI_threshold methods. These R2 values were reduced to 0.89–0.90 and 

Table 4 
The mean absolute error between tested methods and ground truth data of 1st and 2nd round data collection.    

Paspalum Zoysia   

1st 
round 

2nd 
round 

Average St.Dev. S.E. 1st 
round 

2nd 
round 

Average St.Dev. S.E. 

Low complexity NDVI_k-means 13.9369 12.6727 13.3048 0.8939 0.6321 4.4146 5.1940 4.8043 0.5511 0.3897 
CIR_ISODATA (2-class) 7.6011 14.3449 10.9730 4.7686 3.3719 6.4533 7.9094 7.1813 1.0297 0.7281 
CIR_k-means (2-class) 7.7984 6.0698 6.9341 1.2223 0.8643 6.3306 6.5366 6.4336 0.1457 0.1030 
6B_ISODATA (2-class) 7.0345 6.4270 6.7308 0.4296 0.3038 7.0103 8.1752 7.5927 0.8237 0.5824 
6B_k-means (2-class) 7.4180 6.4270 6.9225 0.7007 0.4955 6.8876 8.1752 7.5314 0.9105 0.6438 
NDRE_k-means 22.9404 13.2111 18.0757 6.8797 4.8647 18.9742 7.0729 13.0236 8.4156 5.9507 
RGB_k-means (2-class) 12.5212 17.8721 15.1966 3.7837 2.6755 11.2637 29.5664 20.4151 12.9419 9.1513 
RGB_ISODATA (2-class) 12.6284 21.7517 17.1901 6.4511 4.5616 11.3589 13.4733 12.4161 1.4951 1.0572 

Moderate 
complexity 

Green pixel 2.3825 2.4996 2.4411 0.0828 0.0586 1.8152 2.4592 2.1372 0.4554 0.3220 
NDVI_threshold 2.5890 5.6002 4.0946 2.1292 1.5056 2.1470 5.0602 3.6036 2.0599 1.4566 
Canopeo 2.5253 6.9702 4.7477 3.1430 2.2225 2.0374 4.3159 3.1767 1.6112 1.1393 
6B_k-means (10-class 
combined) 

9.1822 4.2503 6.7162 3.4874 2.4659 3.2976 2.6086 2.9531 0.4871 0.3445 

NDRE_threshold 10.5363 3.8648 7.2006 4.7174 3.3357 4.6640 2.3393 3.5017 1.6438 1.1624 
CIR_ISODATA (10-class 
combined) 

7.9978 6.4625 7.2302 1.0856 0.7677 3.1325 3.8440 3.4882 0.5031 0.3557 

CIR_k-means (10-class 
combined) 

11.3161 7.2222 9.2692 2.8949 2.0470 4.6229 4.6997 4.6613 0.0543 0.0384 

6B_ISODATA (10-class 
combined) 

3.4015 13.1728 8.2871 6.9093 4.8856 1.7967 4.7853 3.2910 2.1132 1.4943 

VARI_threshold 11.9981 14.6001 13.2991 1.8399 1.3010 7.5357 8.2290 7.8823 0.4902 0.3466 
RGB_k-means (10-class 
combined) 

17.7943 17.8685 17.8314 0.0525 0.0371 28.0091 29.6006 28.8049 1.1254 0.7958 

RGB_ISODATA (10-class 
combined) 

12.5478 17.8685 15.2082 3.7623 2.6603 19.2619 29.6006 24.4313 7.3106 5.1694 

High complexity RGB_SVM 2.9602 2.9771 2.9687 0.0120 0.0085 1.9389 2.8468 2.3929 0.6420 0.4539 
6B_SVM 3.5493 5.6878 4.6186 1.5122 1.0693 1.5517 3.9062 2.7290 1.6649 1.1773 
RGB_MLC 7.0191 3.9783 5.4987 2.1502 1.5204 4.0986 2.4165 3.2576 1.1895 0.8411 
CIR_SVM 4.0637 5.7904 4.9270 1.2209 0.8633 1.5656 3.9645 2.7651 1.6963 1.1995 
6B_MDC 3.5181 6.2477 4.8829 1.9302 1.3648 1.9182 3.8163 2.8673 1.3422 0.9490 
CIR_MDC 3.4126 6.4625 4.9375 2.1566 1.5250 1.8524 3.8440 2.8482 1.4082 0.9958 
Zonal mean NDVI N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
6B_MLC 17.0579 13.5012 15.2796 2.5150 1.7784 7.7095 7.0804 7.3950 0.4449 0.3146 
CIR_MLC 16.9244 14.3449 15.6347 1.8240 1.2898 7.5812 7.9094 7.7453 0.2321 0.1641 
Zonal mean NDRE N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
RGB_MDC 9.6920 51.7748 30.7334 29.7571 21.0414 6.3772 26.1816 16.2794 14.0038 9.9022  

Fig. 12. Mean absolute error comparison of Zoysia using UAVPGC versus GroundPGC. UAV data were collected on September 24 and October 16, and ground data 
were collected on September 25 and October 21 in 2020. Letter a,b, and c above bars indicate different statistical groups (α = 0.05, Duncan test). 
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0.78–0.86 for NDRE with a threshold of 0.2. The VARI with a threshold 
of 0 has an R2 of 0.64–0.70 and 0.42–0.57 for seashore paspalum and 
zoysiagrass, respectively. The multispectral bands derived VIs, espe-
cially NDVI, with threshold approaches had good overall performance. 
However, it did not show a good consistency from time to time, espe-
cially for zoysiagrass. The R2 is 0.94 and 0.83 for first-round and second- 
round, respectively. In addition, the threshold value needs to be deter-
mined empirically, which also introduces users’ bias. Furthermore, the 
proper threshold estimations will likely vary between different species, 
sensors, and sites, making comparisons relatively difficult. 

3.6. Machine learning based on vegetation indices 

The NDVI_k-means has R2 of 0.89–0.92 for seashore paspalum and 
0.79–0.91 for zoysiagrass, and the NDRE_k-means has an R2 of 
0.62–0.87 for seashore paspalum and 0.40–0.74 for zoysiagrass. The 
NDVI_k-means showed an acceptable overall performance, and it is 
relatively easy to use where the user only needs to apply 2-class k-means 
classification to NDVI data. However, like the NDVI_threshold, NDVI_k- 
means is not consistent sometimes. The R2 value of zoysiagrass was 
reduced from 0.91 of first-round of data to 0.79 of second-round of data 
because the performance really depends on seperability of each dataset. 
Besides, the mean absolute error is as high as 13.93%, which indicates 
this approach may be suitable for comparing the relative PGC but may 
not be suitable for accurately estimating the absolute PGC values. 

3.7. RGB image processing approaches 

The introduced GPI method achieved R2 of 0.94–0.96 for seashore 
paspalum and 0.86–0.93 for zoysiagrass, while Canopeo achieved 
0.89–0.95 and 0.80–0.91, respectively. Although Canopeo exhibits high 
correlations in estimating green cover, the introduced GPI method 
showed the lowest absolute errors (1.82–2.50%) among all methods 
compared. However, it is important to recognize that the GPI is based on 
a similar principle as used in digital image analysis, resulting in 
observed higher levels of correlation. 

In summary, the methods with average R2 higher than 0.80 showed 
substantial potential for calculating UAVPGC. Among these compared 
methods, the GPI and SVM classification based on different band com-
posites demonstrated low error and high correlation as compared to 
ground data. Considering RGB sensors usually less expensive than 
multispectral sensors, GPI and RGB-based SVM methods were found to 
offer a practical solution to calculate turfgrass green cover. The six-band 
composite did not appear to offer any advantage over the three bands 
CIR multispectral composite in turfgrass fields. From the complexity 
aspect, the GPI method, which requires several empirical parameters, is 
easier to use as compared to the SVM classification, which needs a data 
training procedure. NDVI_k-means is also an option to calculate turf-
grass green over due to its relative ease of use. However, the user will 
need to compromise the potential large absolute errors. Even though the 
GPI method balances high correlation with ground data, low absolute 
error, ease of use, and low cost, this study provides information to users 
to select proper methods based on their budget and objectives. We also 
found that NIR-based methods have the potential to be used for coverage 
estimation instead of green cover estimation since NIR is sensitive to 
vegetation no matter it is green or not. 

4. Conclusion 

This study demonstrated the application of UAV-based remote 
sensing in determining plot green cover in turfgrasses during the 
establishment period. A total of thirty methods for UAVPGC estimation 
were compared and evaluated based on their level of complexity and 
their correlation coefficient and error rates with the conventional stan-
dard groundPGC methods. The introduced GPI method achieved R2 

ranging from 0.86 to 0.96, with MAE ranging from 1.82 to 2.50%. The 

GPI method only requires an input of hue and saturation values of 
greenness using RGB images and therefore, offers ease of use in practice. 
The SVM classification based on RGB composites is another good option 
with R2 ranging from 0.88 to 0.95, with MAE ranging from 1.94 to 
2.97%. SVM classification provides good correlation and consistency but 
requires a well-trained dataset, which may not be a viable option for 
those with a limited machine learning experience. Nevertheless, the 
results of GPI and RGB_SVM (R2 = 0.86–0.96) reveal that the RGB sensor 
could be suitable for estimating the percent green cover of turfgrasses 
during the establishment period. Overall, the low complexity methods 
are easy to use for the users who do not have too much experience of 
remote sensing, while the moderate and high complexity methods could 
have higher accuracy on green cover estimation. High complexity 
methods are more suitable for users who have the substantial knowledge 
of remote sensing.  
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Abràmoff, M.D., Magalhães, P.J., Ram, S.J., 2004. Image processing with imageJ. 
Biophotonics Int. 11, 36–42. https://doi.org/10.1201/9781420005615.ax4. 

Adamsen, F.J., Pinter, P.J., Barnes, E.M., LaMorte, R.L., Wall, G.W., Leavitt, S.W., 
Kimball, B.A., 1999. Measuring wheat senescence with a digital camera. Crop Sci. 39 
(3), 719–724. https://doi.org/10.2135/cropsci1999.0011183X003900030019x. 

Ashapure, A., Jung, J., Yeom, J., Chang, A., Maeda, M., Maeda, A., Landivar, J., 2019. 
A novel framework to detect conventional tillage and no-tillage cropping system 
effect on cotton growth and development using multi-temporal UAS data. ISPRS J. 
Photogramm. Remote Sens. 152, 49–64. https://doi.org/10.1016/j. 
isprsjprs.2019.04.003. 

Ashapure, A., Jung, J., Chang, A., Oh, S., Yeom, J., Maeda, M., Maeda, A., Dube, N., 
Landivar, J., Hague, S., Smith, W., Texas, A., Korea, S., 2020. Developing a machine 
learning based cotton yield estimation framework using multi-temporal UAS data. 
ISPRS J. Photogramm. Remote Sens. 169, 180–194. https://doi.org/10.1016/j. 
isprsjprs.2020.09.015. 

Bach, M., Poloschek, C.M., 2006. Optical illusions. Adv. Clin. Neurosci. Rehabil. 6, 
20–21. https://doi.org/10.1037/h0072139. 

T. Wang et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.compag.2022.106721
https://doi.org/10.1016/j.compag.2022.106721
https://doi.org/10.1201/9781420005615.ax4
https://doi.org/10.2135/cropsci1999.0011183X003900030025x
https://doi.org/10.1016/j.isprsjprs.2019.04.003
https://doi.org/10.1016/j.isprsjprs.2019.04.003
https://doi.org/10.1016/j.isprsjprs.2020.09.015
https://doi.org/10.1016/j.isprsjprs.2020.09.015
https://doi.org/10.1037/h0072139


Computers and Electronics in Agriculture 194 (2022) 106721

12
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