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Yield prediction and variety selection are critical components for assessing production and performance in breeding programs and
precision agriculture. Since plants integrate their genetics, surrounding environments, and management conditions, crop
phenotypes have been measured over cropping seasons to represent the traits of varieties. These days, UAS (unmanned aircraft
system) provides a new opportunity to collect high-quality images and generate reliable phenotypic data efficiently. Here, we
propose high-throughput phenotyping (HTP) from multitemporal UAS images for tomato yield estimation. UAS-based RGB
and multispectral images were collected weekly and biweekly, respectively. The shape of the features of tomatoes such as canopy
cover, canopy, volume, and vegetation indices derived from UAS imagery was estimated throughout the entire season. To
extract time-series features from UAS-based phenotypic data, crop growth and growth rate curves were fitted using
mathematical curves and first derivative equations. Time-series features such as the maximum growth rate, day at a specific
event, and duration were extracted from the fitted curves of different phenotypes. The linear regression model produced high R2

values even with different variable selection methods: all variables (0.79), forward selection (0.7), and backward selection (0.77).
With factor analysis, we figured out two significant factors, growth speed and timing, related to high-yield varieties. Then, five
time-series phenotypes were selected for yield prediction models explaining 65 percent of the variance in the actual harvest. The
phenotypic features derived from RGB images played more important roles in prediction yield. This research also demonstrates
that it is possible to select lower-performing tomato varieties successfully. The results from this work may be useful in breeding
programs and research farms for selecting high-yielding and disease-/pest-resistant varieties.

1. Introduction

Vegetable production is one of the most important compo-
nents in agriculture, also with grain foods. Commercial veg-
etable production in the United States was approximately
33.9 million tons and $12.9 billion in 2018 [1]. Notably,
tomatoes have the highest values of utilized production,
and the value of tomatoes increased by over 10 percent
($1.9 billion) in 2018. Recently, tomato production has faced

constant pressure from biotic and abiotic stresses such as cli-
mate, disease, and pest that can cause significant loss of pro-
duction and fruit quality [2]. To identify the potential yield
performance in a tomato, advanced phenotyping that can
effectively map, monitor, and predict plant traits is required.
Despite the importance of vegetable production, the tradi-
tional method to develop new cultivars in breeding pro-
grams, monitor crop growth/disease, and predict yield has
still employed hand-sampling measurements, which are
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destructive, labor-intensive, time-consuming, and expensive
[3, 4].

Precision agriculture requires large amounts of data to
ensure informed decision-making at the specific crop and
plot level. Remotely sensed data have been used to collect
data in a timely or near real-time manner for agricultural
applications because uncontacted measurements by sensors
have become nondestructive and more efficient in recent
decades [5]. However, satellite-based and airborne remote
sensing is often unable to provide the suitable data required
for plant- or plot-level assessment due to data acquisition
being affected by cloud cover, cost, low spatial resolution,
and limited temporal resolution [6]. In recent years, the
unmanned aerial systems (UASs), namely, unmanned aerial
vehicles (UAVs) or drones, have been regarded as a promis-
ing technology with high potential for agricultural applica-
tions such as crop growth monitoring, disease monitoring,
yield prediction, and biomass estimation [7, 8]. UAS also
provides new opportunities to collect data with finer spatio-
temporal resolution for high-throughput phenotyping
(HTP). Additionally, the hardware cost of UAS platforms
and sensors is decreasing, creating a lower entry barrier so
that students, researchers, and stakeholders can easily adopt
UAS. These new technologies are an alternative solution to
address the limitations of manual or conventional remote
sensing methods to measure crop characteristics [3, 4].

In several studies, it has been proven that UAS-based
remotely sensed data could measure crop traits such as can-
opy cover, plant height, and vegetation indices more fre-
quently and consistently over a larger area than manual
measurement [3, 9, 10]. The aboveground biomass (AGB)
of arable crops has also been estimated by the UAV-based
height model [11]. Jiang et al. [12] and Li et al. [13] also esti-
mated AGB using UAV-based multispectral and hyperspec-
tral images for rice and potatoes, respectively. Yield
prediction using UAS data is another main topic in precision
agriculture. Jung et al. [14] showed that UAS-based HTP
could provide the rank of cotton genotypes, and the top
high-yield varieties could produce yields 10 percent higher,
while Maimaitijiang et al. [15] estimated soybean biomass
from a UAS-based canopy volume model. Recent research
has also adopted the artificial intelligence (AI) technique
for biomass and yield estimation [16, 17]. Plant stresses such
as drought, disease, nutrition deficiencies, pests, and weeds
have been monitored and assessed by UAVs [18]. Previous
studies extracted crop parameters from UAS data and used
the variables directly to develop various methods, but UAS-
based measurements could fluctuate due to errors depending
on data collection conditions such as weather, sensors, date,
and time.

Despite the commercial importance of tomatoes, few
studies have employed UAS data for yield estimation. Enciso
et al. [19] validated UAV measurements compared with field
data for tomato varieties. Johansen et al. [20] used a time
series of UAS imagery to monitor phenotypic traits of indi-
vidual tomato plants, including canopy area, condition, and
growth rate, to quantify responses to salinity stress and iden-
tify tomato plant accessions that performed the best in terms
of yield. Johansen et al. [21] also proposed modelling and

predicting the biomass and yield of individual tomato plants
on the farm scale through field- and UAS-based phenotyp-
ing. In recent years, a machine learning framework was
developed for tomato yield estimation using multitemporal
remote sensing data collected fromUAS [22]. However, these
initial works directly used limited time-series data over the
entire cropping season and phenotypes.

In this study, we propose a novel method to extract
advanced phenotypic features from UAS data in the tomato
field for yield estimation and variety selection. The growth
and growth rate curves of phenotypic data were generated
from multitemporal UAS data to extract crop traits indicat-
ing growth timing and speed over the whole cropping season.
Factor analysis was applied to analyse more valuable pheno-
typic features. Finally, we generated a yield estimation model
in the tomato field and then demonstrated the possibility of
selecting the high-performing varieties and eliminating the
lower-performing varieties.

2. Study Area and Materials

2.1. Study Area. The study area was located at the Texas
A&M (Agriculture and Mechanical) AgriLife Research and
Extension Center in Weslaco, Texas, USA (latitude: 26°9′
24″N, longitude: 97°57′46″W) (Figure 1(a)). Tomato fields
consist of two major components for identifying/characteriz-
ing resistance against insect-vector transmitted diseases and
evaluating planting dates and mulch cover to extend tomato
production. The western side of the study area was selected to
apply the UAS-based phenotyping method for high-yielding
variety selection. Each experimental plot which consisted of
four individual tomato plants was established with three
planting dates (Feb. 29, Mar. 16, and Mar. 31, 2016), plastic
mulch covers (black, white, and bare), and cultivars (9 differ-
ent varieties). Each variety was replicated three times per
planting date and mulch cover in randomized deployment.
Tomatoes were harvested 3 times from each plot, and the
sum (total yield) of the three harvests was used for the yield
prediction model and evaluation.

Ground control points (GCPs) were installed around the
study area for precise georeferencing and coregistration of
processed UAS data, including orthomosaic images and dig-
ital surface models (DSMs) [3]. Although the approximate
location of all images was recorded by onboard GPS of
UAV, a total of 9 GCPs were installed in this study
(Figures 1(b) and 1(c)). Eight GCPs were located around
the tomato site, and one GCP was installed in the middle of
the study area to correct bowling effects by structure from
motion (SfM), which is the most frequently used algorithm
to generate orthomosaic images from UAS data [23]. The
center coordinate of all GCPs was measured by using an
APS-3 Real-Time Kinematic (RTK) GPS (Altus Positioning
System, Inc., California, USA).

2.2. UAS Platforms and Sensors. DJI Phantom Products (DJI,
Shenzhen, China), which is the most popular commercial-
ized model, and the UAV platform developed by the research
team consisting of an Iris quadcopter (3DR, Berkeley, USA)
and a Canon S110 digital camera (Canon, Tokyo, Japan),
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which is a 12-megapixel camera, were used to collect RGB
(Figure 2(a)). For multispectral data, another UAS system
was developed with X8 octocopter (3DR, Berkeley, USA)
and ADC Snap (Tetracam, Chatsworth, UAS) (Figure 2(b)),
which can collect 3 bands, including the wavelengths of

green, red, and near-infrared (NIR). The Corpus Christi
research group designed a mount to integrate the multispec-
tral camera to the bottom of the X8 platform. The mount was
printed out by a 3D printer and assembled with dampers.
The developed systems collected geotagged RGB and

(a)

N

(b) (c)

Figure 1: (a) The approximate location of the study area in Texas and (b) a ground photo of the GCP in the field. (c) Overall orthomosaic
image of the tomato area covered by UAS. The yellow rectangle indicates the selected field for the high-throughput phenotyping experiment
in this study. Red dots are the locations of 9 GCPs.

Digital
camera
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Flight 
controller
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Figure 2: The UAS systems developed to collect (a) RGB and (b) multispectral imagery.

Table 1: The specification of RGB and multispectral camera.

Sensor Platform Camera Sensor size (mm) Focal length (mm) FOV (°) Image size (pixels)

RGB

Phantom 2 Vision+ FC200 6:17 × 4:55 2.5mm 120° 4384 × 3288

Phantom 4 FC330 6:17 × 3:47 20mm 94° 4000 × 3000

3DR Iris Cannon S110 7:6 × 5:7 24mm 84° 4000 × 3000

Multispectral 3DR X8 Tetracam ADC Snap 6:59 × 4:9 8.43mm 38° 1280 × 1024
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multispectral images. Table 1 shows the specification of the
UAS-based RGB and multispectral system used in this study
for data collection.

2.3. UAS Data Collection. Two flight teams operated separate
UAV platforms and collected data for more frequent time-
series datasets. The Corpus Christi research group used the
DJI Phantom series (Phantom 2 and 4) and X8 platform with
a multispectral camera to collect RGB and a multispectral
imagery, respectively, every 2 weeks. RGB and multispectral
UAS systems operated separately for more efficient flights.
The flight conditions including altitude, flight speed, and
camera setting should be different since RGB and multispec-
tral cameras have different specifications such as field of view
(FOV) and focal length. Another flight team in Weslaco col-
lected RGB imagery using the Iris platform with a Canon
camera.

Tables 2 and 3 show the flight logs for RGB and multi-
spectral images, including parameters such as flight altitude,
image overlap, and resolution. 18 flights were conducted to
collect RGB images for 3 months (March~June 2016), while
the multispectral UAS system flew every other week. The res-
olution is the ground sampling distance (GSD) of the ortho-
mosaic image generated by the SfM algorithm.

3. UAS-Based High-Throughput
Phenotyping (HTP)

3.1. Preprocessing of UAS Images

3.1.1. Orthomosaic Image DSM Generation. PhotoScan Pro
software (Agisoft LLC, St. Petersburg, Russia) was used to
apply the SfM algorithm to generate DSM and orthomosaic
images from UAS raw images. The SfM algorithm is one of
the most frequently used commercial software to generated

Table 2: The flight log of RGB datasets.

Date Platform (sensor) Altitude (m) Overlap (%) Resolution (cm)

2016/03/23 Iris (S110) 40 80 × 70 1.26

2016/03/28 Iris (S110) 30 80 × 70 0.98

2016/03/29 Iris (S110) 30 80 × 70 0.99

2016/03/31 Phantom 2 Vision+ (FC200) 30 84 0.84

2016/04/14 Phantom 4 (FC330) 30 90 1.32

2016/04/19 Iris (S110) 30 80 × 70 0.96

2016/04/21 Phantom 4 (FC330) 30 90 1.35

2016/04/25 Iris (S110) 30 80 × 70 1.04

2016/05/04 Phantom 4 (FC330) 30 90 1.34

2016/05/10 Iris (S110) 30 80 × 70 0.95

2016/05/12 Phantom 4 (FC330) 30 90 1.40

2016/05/16 Iris (S110) 30 80 × 70 0.96

2016/05/23 Iris (S110) 30 80 × 70 1.00

2016/05/24 Iris (S110) 30 80 × 70 0.93

2016/05/25 Phantom 4 (FC330) 30 90 1.34

2016/06/09 Phantom 4 (FC330) 30 90 1.01

2016/06/16 Phantom 4 (FC330) 30 90 1.00

2016/06/22 Phantom 4 (FC330) 20 85 0.82

Table 3: The flight log of multispectral datasets.

Date Platform (sensor) Altitude (m) Overlap (%) Resolution (cm)

2016/03/31

X8+ (Tetracam ADC Snap)

40 65 × 60 2.40

2016/04/14 40 65 × 65 2.07

2016/04/21 40 65 × 65 2.05

2016/05/04 40 65 × 85 2.17

2016/05/12 50 73 × 65 2.68

2016/05/25 40 65 × 60 2.18

2016/06/09 50 73 × 65 2.65

2016/06/22 40 75 × 80 1.88
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3D point clouds, DSMs, and orthomosaics from UAS raw
images. The GPS coordinates of GCPs were input into the
software for precision georeferencing and coregistration of
DSM and orthomosaic. Although the image location of
UAS raw images was recorded in the metadata of geotagged
images, the precision level was not enough, which could
cause the bowl effect, one major error of the SfM algorithm.
GCPs with high accuracy and good deployment can solve
these problems when the SfM algorithm is applied to UAS
raw images [24]. DSM and orthomosaics of RGB and multi-
spectral images were generated using PhotoScan Pro with
GCPs. The geolocation accuracy of DSM and orthomosaics
was less than one pixel.

3.1.2. Radiometric Calibration for Multispectral Image.
Radiometric calibration for multispectral images was con-
ducted to calculate more accurate vegetation index such as
NDVI. In this study, we used radiometric calibration panels
to convert the digital number (DN) in the multispectral
orthomosaic image to the reflectance value using the empir-
ical line method (ELM) [25]. Four reflectance panels (5%,
12%, 33%, and 52%) were placed in the tomato field before
flying the multispectral platform. The average DN of each
reflectance panel in the multispectral orthomosaic image
was compared with the actual reflectance values measured
in the laboratory (Figure 3). The empirical line (EL) was gen-
erated for each flight. The entire pixel value of the multispec-
tral orthomosaic image was converted to reflectance by the
developed EL.

3.2. Product Generation from UAS Data

3.2.1. Plot Polygon Generation. The rectangular polygons
were generated as plot boundaries for each variety to extract
plot-based phenotypic information (Figure 4(a)). To create
rectangles of the same size (1 × 2 meters) according to plot
design, the centerline of four individual plants in each plot
was manually delineated by using the canopy area in the
orthomosaic image on March 28, 2018. The angle and center
of the line were considered to determine the polygons auto-
matically. The plot boundary properly included four individ-
ual plants (Figure 4(b)). The pixels within the polygon were
selected to extract phenotypic data of a single variety. In the

study area, there were 81 polygons (9 cultivars × 3mulches
× 3 replications) per planting date.

3.2.2. Geospatial Product Generation. Canopy cover (CC),
canopy volume (CV), excessive greenness index (ExG), and
normalized difference vegetation index (NDVI) were gener-
ated from RGB and multispectral orthomosaic images and
DSMs. The canopy is the aboveground portion of a plant or
crop. As the canopy is strongly related to crop status, health,
and environment, canopy cover is a useful way of monitoring
crop development and productivity. Although the canopy
cover has been measured using subjective methods [26, 27],
canopy pixels in RGB images, which mean green areas, can
be extracted nondestructively and easily. The Canopeo algo-
rithm, defined as Equation (1), was employed to classify can-
opy pixels from RGB orthomosaic images [28]. Since there
are three plastic mulch covers (black, white, and bare) in
the study area, two more conditions to determine noncanopy
pixels were considered as Equation (2):

Canopy = Red
Green

< P1

� �
and

Blue
Green

< P2

� �
and

2Green − Red − Blue > P3ð Þ,
ð1Þ

Red + Green + Blue < P4ð Þ and Green − Blue > P5ð Þ, ð2Þ

where P1 and P2 are parameters to classify green pixels and
P3 is a parameter that sets the minimum excess green index.
P1 and P2 indicate the predominant green of each pixel. P3
effectively classifies dark or gray pixels that cannot be ade-
quately discriminated using P1 and P2. Basically, we used
the suggested P1, P2, and P3 values (0.95, 0.95, and 20) in a
previous study [28]. P4 is the sum of the digital number
(DN) of all bands at each pixel, while P5 indicates the differ-
ence between the green and blue bands. Nevertheless, the
parameters were empirically adjusted depending on the color
tone and hue of each RGB orthomosaic image. P4 and P5
were used to remove white and black plastic mulch covers,

(a) (b)

Figure 3: (a) Ground photos of reflectance panels (5%, 12%, 33%, and 52%) and (b) subset image of reflectance panes in color-infrared (CIR)
orthomosaic image. The colored rectangles indicate the region of interest (ROI) to calculate the average DN of the panels.
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respectively. As white and black mulch showed very high or
low DN, P4 and P5 with values 600 and 30 were employed
to filter out, respectively. A CC map indicating canopy and
noncanopy pixels was generated. The canopy area in each
plot polygon was divided by polygon size to calculate the
CC value of all varieties.

To calculate the CV, a canopy height model (CHM) was
generated by subtracting the digital terrain model (DTM)
from DSM for each UAS flight. DTM was created from the
3D point cloud data generated from earlier UAS flights on
March 23, 2016. The 3D points were classified into ground

and nonground points using LAStools, and DTM was gener-
ated by the natural neighbor interpolation algorithm from
the ground points. The pixel value from CHM, which means
canopy height, was multiplied by pixel size to calculate pixel
volume. The sum of the pixel volume in the plot polygon was
considered CV of each variety.

Two vegetation indices, ExG and NDVI, were generated
from RGB and multispectral orthomosaic images, respec-
tively. ExG was calculated from RGB color with Equation
(3), while NDVI was generated from multispectral image
with Equation (4) [29]. Only ExG and NDVI values of the

1st 
Planting

3rd 
Planting

2nd 
Planting

North South

(a)

Plant 1

Plant 2

Plant 3

Plant 4

(b)

Figure 4: The generated polygons of the plot boundary for HTP in (a) the experimental area of three planting dates and mulch cover. (b) The
subset of a single polygon on white plastic, including four individual plants of the same cultivar and centerline of plants (yellow line).
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Figure 5: Example of CC growth and growth rate curve from RGB. (a) CC in individual plot polygons was calculated with different dates and
days after planting (DAPs). Scatter plot and sigmoid curve are generated in (b). Each point means UAS measurement. The last 3 UAS
measurements acquired in June were not used to fit the sigmoid curve. (c) The 1st derivative was calculated as the growth rate curve.
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canopy area in the plot polygon were selected to calculate the
average of ExG and NDVI values as the representative for
each variety:

ExG = 2g − r − b, ð3Þ

where

r =
Red

Red + Green + Blue
,

g =
Green

Red + Green + Blue
,

b =
Blue

Red + Green + Blue
,

NDVI =
Red −NIR
Red + NIR

:

ð4Þ

3.3. Feature Extraction from Time-Series UAS Data

3.3.1. Growth and Growth Rate Curve. Multitemporal phe-
notypes including CC, CV, ExG, and NDVI enabled
advanced phenotypic features. Time-series measurements
of these phenotypes were used to model the growth pattern
of each variety. Sigmoidal and polynomial functions were
adopted to fit the optimal curve depending on the input var-
iables. CC and CV measurements over the growing season
were fitted with a sigmoid function to generate growth
curves (Figure 5). Although there were 18 UAS observations,
the last three measurements were not selected for sigmoidal
curve fitting. The first derivatives of the growth curve were
generated as the growth rate curves.

The 3rd polynomial function was fitted for 18 ExG obser-
vations as ExG progression curves (Figure 6). The ExG pro-
gression curve was divided into two parts by the date at the
maximum ExG value. The left and right sides from the date
indicate the increasing and decreasing canopy growth
periods, respectively. In terms of NDVI, due to weather con-
ditions and data acquisition time, four multispectral images
were selected based on the data quality to fit the 2nd polyno-
mial curve. The multispectral images collected early in the
morning contained a significant amount of shadow and sat-

urated pixels caused by a low sun angle and effect from the
surrounding windbreaker plot. The NDVI progression curve
was also divided into two parts, ExG.

3.3.2. Phenotypic Feature Extraction. In this study, a total
of 22 phenotypic features were extracted from growth
and progression models derived from time-series UAS
measurements (Table 4). The maximum CC (F1) and maxi-
mum CV (F5) were extracted from the sigmoid curve
(Figure 7(a)). From the growth rate curves, features including
the maximum growth rate (F2 and F6), day after planting
(DAP) at the maximum growth rate (F3 and F7), and dura-
tion over the half maximum period (F4 and F8) from DAPs
of half maximum were calculated (Figure 7(b)). The maxi-
mum ExG value (F9) and DAP at the maximum ExG value
(F10) were extracted from the ExG progression curve. The
ExG measurements of both periods were then fitted with lin-
ear models to calculate the slopes of increasing and decreas-
ing canopy periods (F11 and F15). The maximum values of
the increasing and decreasing lines at the maximum ExG
DAP (F12 and F16), duration (F13 and F17), and area of each
period (F14 and F18) were calculated from the fitted curves
(Figure 7(c)). Four features were extracted from the NDVI
progression curve. The maximum NDVI (F19) and DAP at
maximum NDVI (F20) were also extracted from the NDVI
progression curve. The increasing NDVI slope (F21) and
decreasing NDVI slope (F22) were also calculated from the
progression curve by connecting the first observation with
the maximum NDVI value and the last NDVI observation
with the maximum NDVI value.

4. Results and Discussion

4.1. Correlation Coefficient of Phenotypic Features and
Harvested Yield. Most researches have tried to find the fea-
tures highly correlated with yield using UAV data and
reported a positive correlation between vegetation indices
and both biomass and yield [30–32]. A few studies also focus
on extracting discrete phenotypic data, such as canopy cover,
canopy height, and vegetation indices, related to biomass
and yield for tomato [21, 33]. Although they could predict
biomass and yield using UAV-derived phenotypes and

Date 2016/03/29 2016/04/14 2016/05/16 2016/06/16
DAP 24 46 78 109

ExG … … …
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Figure 6: Example of ExG progression curve. (a) ExG in individual plot polygons was calculated with different dates and DAPs. Heath leaves
are indicated as greener pixels. (b) All 18 UAS measurements were used to fit the 3rd polynomial curve.
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environment conditions, data volume was limited to consider
the whole growing cycle. It is impossible to collect UAV data
at the same DAP in different seasons. In addition, the discrete
phenotype values such as vegetation indices should be varied
according to the conditions of the surrounding environment
and UAV (platform and sensors).

Despite these challenges, UAS-based phenotypic features
can play an important role in assisting plant breeding efforts.
As supports such as tomato cages and wooden sticks should
be installed in tomato fields, the plant height (PH) does not
show significant variability to indicate the difference in
tomato varieties. We calculated the correlation coefficient
between the phenotypic features from CC, CV, ExG, and
NDVI in Table 4 and the actual yield in 81 plots on the 1st
planting (Table 5). The DAP at the maximum growth rate
of CV (F7) and the DAP at the maximum value of ExG
(F10) were highly correlated with the actual yield (both
0.63). Both features are likely related to robust early crop
growth and development phases to expand plant size and
likely also indicate a healthy (green) canopy. A high fruit load
would cause a stronger shift in the source-sink relationship of
the plants because photosynthesis produced at the canopy
(leaf) level will be consumed mostly to produce tomato fruits
instead of growing. Thus, we expect a high fruit load to cause
faster canopy deterioration as the fruits take priority over
vegetative growth for carbohydrates. This shift in the
source-sink relationship, which will ultimately lead to crop
maturity, is usually expressed as a change in leaf color, leaf
senescence, or a combination of both. Interestingly, when

looking at ExG, the decreasing slope after the maximum for
the latter part of the season (F15) also showed a good corre-
lation with crop yield (-0.63). As the decreasing slope is a
negative value, this correlation indicates that plants shifting
energy to fruits faster can produce high yields.

4.2. Yield Estimation Modelling. In most recent years, AI
techniques such as machine and deep learning have received
great attention and derived remarkable results for predicting
biomass and yield in various crops [21, 31, 34]. The AI-based
biomass and yield prediction models resulted in high accu-
racy of over 90 percent; a critical issue of AI algorithms is that
a large number of training datasets are required to obtain
robust and accurate machine learning algorithms. However,
building a large number of training samples requires a long
time and heavy labor [35]. For example, Johansen et al. [21]
predicted biomass and yield using 81 UAV-derived variables
and a random forest algorithm for 1,200 tomato plants.
Although the AI algorithm provides very accurate yield pre-
diction, it cannot be adopted for this study area because of
the limited plot numbers causing the singularity. Therefore,
we used linear regression to estimate tomato yield using
UAV data for 81 tomato varieties.

81 plots on the first planting date with three ground cover
conditions (white and black plastic and bare ground) were
selected for linear regressions. Yield estimation models were
developed by using the actual tomato yield as a dependent
variable and the corresponding multitemporal phenotypic
features as independent variables in the linear regression.

Table 4: Description of features extracted from CC, CV, ExG, and NDVI models.

Variable name UAS product Feature description

F1

CC

Maximum value of CC

F2 Maximum growth rate of CC

F3 DAP at maximum growth rate of CC

F4 Duration over the half maximum period of CC

F5

CV

Maximum value of CV

F6 Maximum growth rate of CV

F7 DAP at maximum growth rate of CV

F8 Duration over the half maximum period of CV

F9

ExG

Maximum of ExG value

F10 DAP at maximum of ExG value

F11 Increasing slope of ExG

F12 Maximum value of increasing line at maximum ExG DAP

F13 Duration of increasing ExG period

F14 Area of increasing period of ExG

F15 Decreasing slope of ExG

F16 Maximum value of decreasing line at maximum ExG DAP

F17 Duration of decreasing ExG period

F18 Area of decreasing period of ExG

F19

NDVI

Maximum NDVI value

F20 DAP at maximum NDVI value

F21 Increasing slope of NDVI

F22 Decreasing slope of NDVI
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All 22 phenotypic features from UAS data were selected to
develop the yield estimation model. In addition, two different
feature selection approaches were employed—(1) a forward
feature selection approach starting from a null model and
(2) a backward feature elimination approach starting from
a full model—to automatically select features and develop
statistically significant models (Table 6). All yield estimation
models resulted in high R2 (>0.7) between the actual and esti-
mated yields. Although the AI algorithm might show higher
accuracy, linear regression can be alternative according to
field conditions and data specs. In general, the backward
elimination approach resulted in a higher R2 than the for-
ward selection, but the number of input variables that auto-
matically remained in the final models was significantly
greater than that of the forward selection approach. As the
backward elimination approaches tend to overfit with many
variables, the forward selection method can be simpler and
more efficient.

In the forward selection model, the day at maximum value
of ExG (F10), decreasing slope value of ExG (F15), day at max-
imum growth rate of CC (F3), day at maximum growth rate of

CV (F7), duration over the half maximum period of CV (F8),
and duration of increasing ExG period (F13) were selected
sequentially. Three phenotypic features (F7, F10, and F15)
highly correlated with actual yield were entered in the forward
selection model. The selected variables in the model can be
divided into two groups, crop growth timing (F3, F7, and
F10) and crop growth duration (F8, F13, and F15). Crop
growth timing indicates the specific day after planting when
the plant reaches the status of the greenest canopy and fastest
growth. Crop growth timing has positive relationships with
actual yield, implying that maturity timing is strongly related
to yield performance, as later maturity can make the plant size
larger. In crop growth duration, the period of crop growth is a
critical variable affecting the yield, while the deterioration
speed is also correlated.

4.3. Factor Analysis for UAS-Based Phenotypic Features.
Although the variable importance can be calculated to pre-
dict biomass and yield, it cannot be consistent for biomass
and yield prediction according to the UAV dataset and its
specs [21]. In addition, as a few of 22 phenotypic features
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Figure 7: Concept of feature extraction from (a) the growth curve and (b) the growth rate curve of CC and CV. 10 features were extracted
from the (c) ExG progression curve.
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proposed in this study were highly correlated with each
other, factor analysis was performed to avoid collinearity
and overfitting issues in the regression model and identify
statistically significant phenotypic features. Factor analysis
is used to describe the covariance relationships among many
variables in terms of a few underlying, but unobservable, ran-
dom quantities [36]. In this study, the maximum likelihood
(ML) method was employed, and two major factors having
over 75 percent cumulative explanations were selected using
the rotated factor matrix calculated by the Varimax method
after seven iterations. The final two factors explained 75 per-
cent of the variance and consisted of nine phenotypic fea-
tures showing two crop traits (Table 7). The first factor
included six phenotypic features, including days after plant-
ing when the ExG value was maximum (F10), duration of
half maximum canopy cover (F4), days after planting when
the canopy volume growth rate was maximum (F7), days
after planting when the NDVI was maximum (F20), days
after planting when the canopy cover growth rate was maxi-
mum (F3), and duration of half maximum canopy volume
(F8). These are kinds of days and durations closely related
to the “timing of crop growth event.” Four of six variables
selected in the linear regression models with the forward
selection method were included in the first factor. As men-
tioned above, crop growth timing and duration strongly
affect tomato yield performance. The six variables of the first
factors imply that the plant growing faster and longer until
canopy deterioration can produce more fruits since the larger
plant can use more energy to produce tomato fruits. The sec-

ond factor included the increasing slope of ExG (F11), the
increasing slope of NDVI (F21), and the triangular area of
the decreasing slope of ExG (F18), which indicate the “speed
of crop growth.” In factor analysis, the other features (F11,
F18, and F21) were selected in the crop growth speed group
instead of the duration of the increasing ExG period (F13)
and decreasing slope value of ExG (F15). F13 and F15 alter-
nated to F11 and F18, indicating similar crop characteristics
of growing speed. A very interesting fact is that the pheno-
typic features from multispectral images were included in
both first and second factors. As the fitted curves of ExG
and NDVI have similar trends, NDVI-related features have
a high correlation with the features of ExG. Two NDVI-
based features also represented the timing of crop growth
and growth speed. The results of factor analysis found that
growth timing, duration, and growth speed were the main
traits affecting tomato yield. Our results showed what crop
characteristics should be considered in breeding programs
for cultivar improvement.

The nine phenotypic features selected by factor analysis
were input into the linear regression model to estimate
tomato yield. A forward feature selection approach was used,
and five phenotypic features were selected for the final model.
The features remaining in the final regression model were
days after planting when the ExG value was maximum
(F10), days after planting when the canopy volume growth
rate was maximum (F7), days after planting when the canopy
cover growth rate was maximum (F3), duration of the half
maximum canopy volume period (F8), and triangle area of
the decreasing ExG slope (F18). The yield prediction model,
as shown in Equation (5), explained 65 percent of the varia-
tion in the actual harvested yield (Figure 8). Four features
(F3, F7, F8, and F10) are related to the crop growth time.
We realized that the phenotypic features related to crop
growth time play a more important role in predicting yield.
In addition, the number of days after planting when ExG
(F10) was the most critical crop parameter for yield estima-
tion was determined not only by factor analysis but also by
general linear regression models.

All variables in the yield prediction model from factor
analysis can be extracted from time-series CC, CV, and
ExG derived from RGB images at similar accuracy with the
phenotypic features from both RGB and multispectral imag-
ery. The results indicated that RGB images can provide
enough information to predict yield at the field level. As
UAS platforms with RGB sensors are relatively cheaper and
easier to operate for data collection and calibration, they
should be a good alternative to collect a large number of crop
parameters for precision agriculture. As CC and CV can be
calculated from multispectral images and NDVI has a trend
similar to ExG, it will be possible to adopt either RGB or mul-
tispectral images for predicting tomato yield at the field level:

Tomato yield = 1:841 × F10 + 0:875 × F18 − 2:546
× F3 + 2:026 × F7 − 0:902 × F8:

ð5Þ

4.4. Tomato Variety Selection. Based on the estimated yield
from the final regression model in factor analysis, the rank

Table 5: Correlation coefficient of the UAV-derived features and
harvested tomato yield.

Variables Correlation coefficient

F1 0.52

F2 -0.12

F3 0.35

F4 0.46

F5 0.54

F6 -0.02

F7 0.63

F8 0.35

F9 0.51

F10 0.63

F11 0.24

F12 0.50

F13 0.45

F14 0.58

F15 -0.63

F16 0.55

F17 -0.24

F18 0.38

F19 0.46

F20 0.53

F21 0.09

F22 -0.33
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of the best performing tomato genotype was determined by
the precited yield. The top 10, 20, 30, and 40 performing
varieties based on the estimation were compared with
the rank by the actual harvested yield to find matched varie-
ties. Figure 9(a) shows how many varieties selected by the
proposed method are correctly matched in the same number
of varieties based on the actual yield. When the estimator
selects the top 10 varieties (blue line), five of them were
included in the top 10 of the high actual yield varieties, which

means a 50 percent match ratio. All top 10 varieties by the
estimator were included in the top 40 high-performing vari-
eties by actual yield. In terms of the top 20 varieties selected
by the estimation model, we could achieve 100 percent selec-
tion accuracy in the top 50 varieties of actual yield. When 40
varieties were selected with the developed model in this study,
34 varieties, which is 85 percent of the 40, were included in the
list of the top 40 actual yields. Although we could not select
high-performing varieties perfectly, our result shows that the

Table 6: Tomato yield prediction model with a linear regression model. The variables are arranged at the significance level.

Features Regression model R square

All (22 features)

Yield = −0:858 × F1 − 4:14 × F2 + 7:07 × F3 + 0:80 × F4 − 13:21 × F5 + 1:70 × F6 − 1:19 × F7

−0:18 × F8 + 50:82 × F9 − 0:49 × F10 − 524:20 × F11 + 901:31 × F12 + 323:92 × F13

+2:68 × F14 − 10777:49 × F15 + 399:90 × F16 − 0:95 × F17 − 10:63 × F18 − 5534:03

× F19 − 222:49 × F20 − 0:25 × F21 − 0:26 × F22 − 2:28

0.79

Forward selection (6 features) Yield = 2:25 × F10 − 1500:15 × F15 − 3:29 × F3 + 1:83 × F7 − 0:71 × F8 − 0:58 × F13 − 50:80 0.70

Backward selection (13 features)

Yield = −4:01 × F2 − 20:49 × F5 + 2:20 × F6 + 30:54 × F19 + 996:360 × F22 + 394:07 × F9

+1:93 × F10 − 9873:48 × F11 + 424:37 × F12 − 12:65 × F14 − 6775:12 × F15

−315:69 × F16 − 0:37 × F17 − 42:845

0.77

Table 7: Rotated factor matrix of selected phenotypic features through factor analysis.

Phenotypic features Factor 1 Factor 2

DAP at maximum of ExG value (F10) 0.911 0.056

Duration over the half maximum period of CC (F4) 0.899 0.063

Maximum growth rate of CV (F7) 0.870 0.116

DAP at maximum NDVI value (F20) 0.858 0.025

Maximum growth rate of CC (F3) 0.833 0.188

Duration over the half maximum period of CV (F8) 0.747 -0.066

Increasing slope of ExG (F11) 0.087 0.885

Increasing slope of NDVI (F21) -0.036 0.822

Area of decreasing period of ExG (F18) 0.115 0.758
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Figure 8: The linear regression results between the predicted yield by five selected features from factor analysis and the harvested yield.
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low-performing varieties could be successfully eliminated by
the proposed framework. For example, scientists can select
and eliminate the bottom 10 varieties by the proposed frame-
work without losing any high-performance varieties. The
advantage of this work is that it is not necessary to harvest
the eliminated varieties in the field. In other words, we can
save economic resources, human power, and time to make
breeding programs more efficient.

Jung et al. [14] compared the average cotton lint yield
among the remaining varieties after variety selection based
on the UAV-derived phenotypes to verify the performance
of the UAV-based variety selection framework. In the cotton
field, the average lint yield increased by 10 percent compared
to the original population after variety selection using UAV

data. UAV-selected varieties matched over 70 percent of
the same lists ranked by actual field harvest measurements.
In this study, to see more details of eliminating low-
performing varieties, the average actual yield of the selected
varieties by UAV-estimated and actual yield was calculated
(Figure 9(b)). When the top 10 high-yield varieties by
UAV-estimated and actual yield are selected, the average
tomato yield is different by about 10 kg. More variety selec-
tion decreases the disparity of the average yield between
UAV and field groups. After selecting more than 50 varieties,
the difference is less than 1 kg. The average tomato yield
increased by 100 and 53 percent compared to all varieties
after variety selection using actual and UAV data, respec-
tively. It implies that the proposed method could provide
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feasible information for selecting high- or low-performance
varieties without destructive hand-sampling and actual
harvesting.

5. Conclusions

In this study, a novel HTP framework of data was proposed
to predict tomato yield using multitemporal UAS data. Shape
features, including canopy cover, canopy volume, and vege-
tation indices derived at the plot level, were determined to
fit the mathematical curves. Time-series phenotypes were
extracted from the growth and growth rate curves. Although
the time-series phenotypic features were individually corre-
lated with actual yield, linear regression models produced
high R2 values (>0.7). Based on the factor analysis, two signif-
icant factors, growth speed and timing, were figured out to be
strongly related to the yield performance of tomato varieties.
Finally, five time-series phenotypes were selected for the yield
prediction model explaining 65 percent of the variance of the
actual harvest. The phenotypic features derived from RGB
images played important roles in providing enough informa-
tion to predict yield. We compared the actual yield with the
estimated yield to determine the possibility of UAS-based
variety selection in breeding programs. Although the high-
performance variety could not be perfectly selected using
the estimator, the low-performance varieties were exactly
matched between UAS-based and actual yields. Ultimately,
the proposed variety selection/elimination process using
UAV data increased the average tomato yield of the remain-
ing varieties by 53 percent. The results from this work can be
useful in breeding programs to select high-yielding and dis-
ease-/pest-resistant varieties for tomato fields. In the future,
we will adopt the AI algorithm to develop a more elaborate
model for yield prediction and variety selection in agricul-
tural applications.
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The data used to support the findings of this study have not
been made available because it is only available for
researchers and collaborators of Texas A&M AgriLife
Research and Extension.

Conflicts of Interest

The authors declare no conflict of interest.

Acknowledgments

This research was supported by Texas AgriLife Research.

References

[1] USDA, Vegetables 2018 Summary (March 2019), USDA
National Agricultural Statistics Service, DC, USA, 2019.

[2] S. Oh, A. Ashapure, T. G. Marconi, J. Jung, and J. Landivar,
“UAS Based Tomato Yellow Leaf Curl Virus (TYLCV) Disease
Detection System,” in Autonomous Air and Ground Sensing
Systems for Agricultural Optimization and Phenotyping IV,
Baltimore, Maryland, USA, 2019.

[3] A. Chang, J. Jung, M. Maeda, and J. Landivar, “Crop height
monitoring with digital imagery from unmanned aerial system
(UAS),” Computers and Electronics in Agriculture, vol. 141,
pp. 232–237, 2017.

[4] A. Ashapure, J. Jung, J. Yeom et al., “A novel framework to
detect conventional tillage and no-tillage cropping system
effect on cotton growth and development using multi-
temporal UAS data,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 152, pp. 49–64, 2019.

[5] D. J. Mulla, “Twenty five years of remote sensing in precision
agriculture: key advances and remaining knowledge gaps,”
Biosystems Engineering, vol. 114, no. 4, pp. 358–371, 2013.

[6] P. Nevavuori, N. Narra, and T. Lipping, “Crop yield prediction
with deep convolutional neural networks,” Computers and
Electronics in Agriculture, vol. 163, article 104859, 2019.

[7] Y. Shi, J. A. Thomasson, S. C. Murray et al., “Unmanned aerial
vehicles for high-throughput phenotyping and agronomic
research,” PLoS ONE, vol. 11, no. 7, article e0159781, 2016.

[8] D. C. Tsouros, S. Bibi, and P. G. Sarigiannidis, “A review on
UAV-based applications for precision agriculture,” Informa-
tion, vol. 10, no. 11, 2019.

[9] A. Ashapure, J. Jung, A. Chang, S. Oh, M. Maeda, and
J. Landivar, “A comparative study of RGB and multispectral
sensor-based cotton canopy cover modelling using multi-
temporal UAS data,” Remote Sensing, vol. 11, no. 23, article
2757, 2019.

[10] J. Yeom, J. Jung, A. Chang et al., “Comparison of vegetation
indices derived from UAV data for differentiation of tillage
effects in agriculture,” Remote Sensing, vol. 11, no. 13,
p. 1548, 2019.

[11] M. L. Gil-Docampo, M. Arza-García, J. Ortiz-Sanz,
S. Martínez-Rodríguez, J. L. Marcos-Robles, and L. F. Sán-
chez-Sastre, “Above-ground biomass estimation of arable
crops using UAV-based SfM photogrammetry,” Geocarto
International, vol. 35, no. 7, pp. 687–699, 2020.

[12] Q. Jiang, S. Fang, Y. Peng et al., “UAV-based biomass estima-
tion for rice-combining spectral, TIN-based structural and
meteorological features,” Remote Sensing, vol. 11, no. 7,
p. 890, 2019.

[13] B. Li, X. Xu, L. Zhang et al., “Above-ground biomass estima-
tion and yield prediction in potato by using UAV- based
RGB and hyperspectral imaging,” ISPRS Journal of Photo-
grammetry and Remote Sensing, vol. 162, pp. 161–172, 2020.

[14] J. Jung, M. Maeda, A. Chang, J. Landivar, J. Yeom, and
J. McGinty, “Unmanned aerial system assisted framework for
the selection of high yielding cotton genotypes,” Computers
and Electronics in Agriculture, vol. 152, pp. 74–81, 2018.

[15] M. Maimaitijiang, V. Sagan, P. Sidike et al., “Vegetation index
weighted canopy volumemodel (CVMVI) for soybean biomass
estimation from unmanned aerial system-based RGB imag-
ery,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 151, pp. 27–41, 2019.

[16] B. Duan, S. Fang, R. Zhu et al., “Remote estimation of rice yield
with unmanned aerial vehicle (UAV) data and spectral mix-
ture analysis,” Frontiers in Plant Science, vol. 10, 2019.

[17] L. Han, G. Yang, H. Dai et al., “Modeling maize above-ground
biomass based on machine learning approaches using UAV
remote-sensing data,” Plant Methods, vol. 15, no. 1, 2019.

[18] J. G. A. Barbedo, “A review on the use of unmanned aerial
vehicles and imaging sensors for monitoring and assessing
plant stresses,” Drones, vol. 3, no. 2, p. 40, 2019.

13Journal of Sensors



[19] J. Enciso, C. A. Avila, J. Jung et al., “Validation of agronomic
UAV and field measurements for tomato varieties,” Computers
and Electronics in Agriculture, vol. 158, pp. 278–283, 2019.

[20] K. Johansen, M. J. L. Morton, Y. M. Malbeteau et al.,
“Unmanned aerial vehicle-based phenotyping using morpho-
metric and spectral analysis can quantify responses of wild
tomato plants to salinity stress,” Frontiers in Plant Science,
vol. 10, 2019.

[21] K. Johansen, M. J. L. Morton, Y. Malbeteau et al., “Predicting
biomass and yield in a tomato phenotyping experiment using
UAV imagery and random forest,” Frontiers in Artificial Intel-
ligence, vol. 3, 2020.

[22] A. Ashapure, S. Oh, T. G. Marconi et al., “Unmanned aerial
system based tomato yield estimation using machine learn-
ing,” in Autonomous Air and Ground Sensing Systems for Agri-
cultural Optimization and Phenotyping IV, Baltimore,
Maryland, USA, 2019.

[23] F.-J. Mesas-Carrascosa, J. Torres-Sánchez, I. Clavero-Rumbao
et al., “Assessing optimal flight parameters for generating
accurate multispectral orthomosaicks by UAV to support
site-specific crop management,” Remote Sensing, vol. 7,
no. 10, pp. 12793–12814, 2015.

[24] T. Su and H. Chou, “Application of multispectral sensors car-
ried on unmanned aerial vehicle (UAV) to trophic state map-
ping of small reservoirs: a case study of Tain-Pu reservoir in
Kinmen, Taiwan,” Remote Sensing, vol. 7, no. 8, pp. 10078–
10097, 2015.

[25] C. Wang and S. W. Myint, “A simplified empirical line method
of radiometric calibration for small unmanned aircraft
systems-based remote sensing,” IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, vol. 8,
no. 5, pp. 1876–1885, 2015.

[26] M. D. Richardson, D. E. Karcher, and L. C. Purcell, “Quantify-
ing turfgrass cover using digital image analysis,” Crop Science,
vol. 41, no. 6, pp. 1884–1888, 2001.

[27] P. R. H. Robson, K. Farrar, A. P. Gay, E. F. Jensen, J. C. Clifton-
Brown, and I. S. Donnison, “Variation in canopy duration in
the perennial biofuel crop Miscanthus reveals complex associ-
ations with yield,” Journal of Experimental Botany, vol. 64,
no. 8, pp. 2373–2383, 2013.

[28] A. Patrignani and T. E. Ochsner, “Canopeo: a powerful new
tool for measuring fractional green canopy cover,” Agronomy
Journal, vol. 107, no. 6, pp. 2312–2320, 2015.

[29] D. M. Woebbecke, G. E. Meyer, K. Von Bargen, and D. A.
Mortensen, “Color indices for weed identification under vari-
ous soil, residue, and lighting conditions,” Transactions of the
ASAE, vol. 38, no. 1, pp. 259–269, 1995.

[30] M. A. Hassan, M. Yang, A. Rasheed et al., “A rapid monitoring
of NDVI across the wheat growth cycle for grain yield predic-
tion using a multi-spectral UAV platform,” Plant Science,
vol. 282, pp. 95–103, 2019.

[31] Y. Liu, X. Chen, Z. Wang, Z. J. Wang, R. K. Ward, and
X. Wang, “Deep learning for pixel-level image fusion: recent
advances and future prospects,” Information Fusion, vol. 42,
pp. 158–173, 2018.

[32] H. Zheng, T. Cheng, M. Zhou et al., “Improved estimation of
rice aboveground biomass combining textural and spectral
analysis of UAV imagery,” Precision Agriculture, vol. 20,
no. 3, pp. 611–629, 2019.

[33] K. Oaddoum, E. L. Hines, and D. D. Iliescu, “Yield prediction
for tomato greenhouse using EFuNN,” International Scholarly
Research Notices, vol. 2013, Article ID 430986, 9 pages, 2013.

[34] M. Maimaitijiang, V. Sagan, P. Sidike, S. Hartling, F. Esposito,
and F. B. Fritschi, “Soybean yield prediction from UAV using
multimodal data fusion and deep learning,” Remote Sensing of
Environment, vol. 237, article 111599, 2020.

[35] Z. Lin and W. Guo, “Sorghum panicle detection and counting
using unmanned aerial system images and deep learning,”
Frontiers in Plant Science, vol. 11, article 534853, 2020.

[36] R. A. Johnson and D.W.Wichern, AppliedMultivariate Statis-
tical Analysis, Pearson Education, New Jersey, 2002.

14 Journal of Sensors


	Unmanned Aircraft System- (UAS-) Based High-Throughput Phenotyping (HTP) for Tomato Yield Estimation
	1. Introduction
	2. Study Area and Materials
	2.1. Study Area
	2.2. UAS Platforms and Sensors
	2.3. UAS Data Collection

	3. UAS-Based High-Throughput Phenotyping (HTP)
	3.1. Preprocessing of UAS Images
	3.1.1. Orthomosaic Image DSM Generation
	3.1.2. Radiometric Calibration for Multispectral Image

	3.2. Product Generation from UAS Data
	3.2.1. Plot Polygon Generation
	3.2.2. Geospatial Product Generation

	3.3. Feature Extraction from Time-Series UAS Data
	3.3.1. Growth and Growth Rate Curve
	3.3.2. Phenotypic Feature Extraction


	4. Results and Discussion
	4.1. Correlation Coefficient of Phenotypic Features and Harvested Yield
	4.2. Yield Estimation Modelling
	4.3. Factor Analysis for UAS-Based Phenotypic Features
	4.4. Tomato Variety Selection

	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

